Publications by authors named "Valentina Petrocelli"

The telomerase reverse transcriptase elongates telomeres to prevent replicative senescence. This process requires exposure of the 3'-end, which is thought to occur when two sister telomeres are generated at replication completion. Using two-dimensional agarose gel electrophoresis (2D-gels) and electron microscopy, we found that telomeric repeats are hotspots for replication fork reversal.

View Article and Find Full Text PDF

Solid cancers exhibit a dynamic balance between cell death and proliferation ensuring continuous tumour maintenance and growth. Increasing evidence links enhanced cancer cell apoptosis to paracrine activation of cells in the tumour microenvironment initiating tissue repair programs that support tumour growth, yet the direct effects of dying cancer cells on neighbouring tumour epithelia and how this paracrine effect potentially contributes to therapy resistance are unclear. Here we demonstrate that chemotherapy-induced tumour cell death in patient-derived colorectal tumour organoids causes ATP release triggering P2X4 (also known as P2RX4) to mediate an mTOR-dependent pro-survival program in neighbouring cancer cells, which renders surviving tumour epithelia sensitive to mTOR inhibition.

View Article and Find Full Text PDF

T memory stem cells (T) display increased self-renewal and prolonged survival capabilities, thus preventing T cell exhaustion and promoting effective anti-tumor T cell responses. T cells can be expanded by Urolithin A (UA), which is produced by the commensal gut microbiome from foods rich in ellagitannins and is known to improve mitochondrial health. Oral UA administration to tumor-bearing mice conferred strong anti-tumor CD8 T cell immunity, whereas ex vivo UA pre-treated T cells displayed improved anti-tumor function upon adoptive cell transfer.

View Article and Find Full Text PDF

Standard cancer therapy targets tumor cells without considering possible damage on the tumor microenvironment that could impair therapy response. In rectal cancer patients we find that inflammatory cancer-associated fibroblasts (iCAFs) are associated with poor chemoradiotherapy response. Employing a murine rectal cancer model or patient-derived tumor organoids and primary stroma cells, we show that, upon irradiation, interleukin-1α (IL-1α) not only polarizes cancer-associated fibroblasts toward the inflammatory phenotype but also triggers oxidative DNA damage, thereby predisposing iCAFs to p53-mediated therapy-induced senescence, which in turn results in chemoradiotherapy resistance and disease progression.

View Article and Find Full Text PDF

Colorectal cancer is among the leading causes of cancer-associated deaths worldwide. Treatment failure and tumor recurrence due to survival of therapy-resistant cancer stem/initiating cells represent major clinical issues to overcome. In this study, we identified lysine methyltransferase 9 (KMT9), an obligate heterodimer composed of KMT9α and KMT9β that monomethylates histone H4 at lysine 12 (H4K12me1), as an important regulator in colorectal tumorigenesis.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created a mouse model (Trp53ΔIECAktE17K) that shows aggressive tumor behavior and reflects the human mesenchymal subtype of CRC (CMS4), which has the worst survival rates.
  • * Increased expression of NOTCH3 is linked to tumor severity in CRC, and targeting NOTCH3 with an antibody in the mouse model shows promise in reducing tumor spread, suggesting it as a potential treatment focus for CMS4 CRC patients.
View Article and Find Full Text PDF

The germinal center (GC) reaction represents an essential phase of an adaptive immune response. Dysfunction of GC B cells can lead to life-threatening diseases including autoimmune disorders, lymphomas, and opportunistic infections. Defining the molecular circuitries controlling GC B cell physiology is crucial to understand the pathogenesis of GC B cell disorders, as well as to develop improved vaccines against foreign pathogens.

View Article and Find Full Text PDF

Similar to resting mature B cells, where the B-cell antigen receptor (BCR) controls cellular survival, surface BCR expression is conserved in most mature B-cell lymphomas. The identification of activating BCR mutations and the growth disadvantage upon BCR knockdown of cells of certain lymphoma entities has led to the view that BCR signalling is required for tumour cell survival. Consequently, the BCR signalling machinery has become an established target in the therapy of B-cell malignancies.

View Article and Find Full Text PDF

B-cell development is a multistep process sustained by a highly coordinated transcriptional network under the control of a limited set of transcription factors. Epigenetic mechanisms, including DNA methylation, histone posttranslational modifications and microRNAs act in concert with transcription factors to promote lineage commitment, define and sustain cell identity and establish heritable cell-type- and stage-specific gene expression profiles. Epigenetic modifiers have recently emerged as key regulators of B-cell development and activation.

View Article and Find Full Text PDF

It has been suggested that, in Arabidopsis, auxin controls the timing of anther dehiscence, possibly by preventing premature endothecium lignification. We show here that auxin content in anthers peaks before the beginning of dehiscence and decreases when endothecium lignification occurs. We show that, in the auxin-perception mutants afb1-3 and tir1 afb2 afb3, endothecium lignification and anther dehiscence occur earlier than wild-type, and the gene encoding the transcription factor MYB26, which is required for endothecium lignification, is over-expressed specifically at early stages; in agreement, MYB26 expression is reduced in naphthalene acetic acid-treated anthers, and afb1 myb26 double mutants show no endothecial lignification, suggesting that auxin acts through MYB26.

View Article and Find Full Text PDF