The CRISPR-Cas12a platform has attracted interest in the genome editing community because the prototypical Acidaminococcus Cas12a generates a staggered DNA double-strand break upon binding to an AT-rich protospacer-adjacent motif (PAM, 5'-TTTV). The broad application of the platform in primary human cells was enabled by the development of an engineered version of the natural Cas12a protein, called Cas12a Ultra. In this study, we confirmed that CRISPR-Cas12a Ultra ribonucleoprotein complexes enabled allelic gene disruption frequencies of over 90% at multiple target sites in human T cells, hematopoietic stem and progenitor cells (HSPCs), and induced pluripotent stem cells (iPSCs).
View Article and Find Full Text PDFGenome editing has shown great promise for clinical translation but also revealed the risk of genotoxicity caused by off-target effects of programmable nucleases. Here we describe chromosomal aberrations analysis by single targeted linker-mediated PCR sequencing (CAST-Seq), a preclinical assay to identify and quantify chromosomal aberrations derived from on-target and off-target activities of CRISPR-Cas nucleases or transcriptional activator-like effector nucleases (TALENs), respectively, in human hematopoietic stem cells (HSCs). Depending on the employed designer nuclease, CAST-Seq detected translocations in 0%-0.
View Article and Find Full Text PDFEfficient delivery of genetic material to primary cells remains challenging. Here, efficient transfer of genetic material is presented using synthetic biodegradable nanocarriers, resembling extracellular vesicles in their biomechanical properties. This is based on two main technological achievements: generation of soft biodegradable polyelectrolyte capsules in nanosize and efficient application of the nanocapsules for co-transfer of different RNAs to tumor cell lines and primary cells, including hematopoietic progenitor cells and primary T cells.
View Article and Find Full Text PDFSomatic mutations of calreticulin (CALR) have been described in approximately 60-80% of JAK2 and MPL unmutated Essential Thrombocythemia and Primary Myelofibrosis patients. CALR is an endoplasmic reticulum (ER) chaperone responsible for proper protein folding and calcium retention. Recent data demonstrated that the TPO receptor (MPL) is essential for the development of CALR mutant-driven Myeloproliferative Neoplasms (MPNs).
View Article and Find Full Text PDFCalreticulin (CALR) is a chaperone protein that localizes primarily to the endoplasmic reticulum (ER) lumen where it is responsible for the control of proper folding of neo-synthesized glycoproteins and the retention of calcium. Recently, mutations affecting exon 9 of the gene have been described in approximately 40% of patients with myeloproliferative neoplasms (MPNs). Although the role of mutated CALR in the development of MPNs has begun to be clarified, there are still no data available on the function of wild-type (WT) CALR during physiological hematopoiesis.
View Article and Find Full Text PDFThe possibility of editing complex genomes in a targeted fashion has revolutionized basic research as well as biomedical and biotechnological applications in the last 5 years. The targeted introduction of genetic changes has allowed researchers to create smart model systems for basic research, bio-engineers to modify crops and farm animals, and translational scientists to develop novel treatment approaches for inherited and acquired disorders for which curative treatment options are not yet available. With the rapid development of genome editing tools, in particular zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR-Cas system, a wide range of therapeutic options have been-and will be-developed at an unprecedented speed, which will change the clinical routine of various disciplines in a revolutionary way.
View Article and Find Full Text PDFPrimary myelofibrosis (PMF) is a chronic Philadelphia-negative myeloproliferative neoplasm characterized by hematopoietic stem cell-derived clonal myeloproliferation, involving especially the megakaryocyte lineage. To better characterize how the altered expression of microRNAs might contribute to PMF pathogenesis, we have previously performed the integrative analysis of gene and microRNA expression profiles of PMF hematopoietic stem/progenitor cells (HSPCs), which allowed us to identify miR-494-3p as the upregulated microRNA predicted to target the highest number of downregulated mRNAs.To elucidate the role of miR-494-3p in hematopoietic differentiation, in the present study we demonstrated that miR-494-3p enforced expression in normal HSPCs promotes megakaryocytopoiesis.
View Article and Find Full Text PDFmicroRNAs are key regulators of gene expression that control stem cell fate by posttranscriptional downregulation of hundreds of target genes through seed pairing in their 3' untranslated region. In fact, miRNAs tightly regulate fundamental stem cell processes, like self-renewal, proliferation, and differentiation; therefore, miRNA deregulation may contribute to the development of solid tumors and hematological malignancies. miR-382-5p has been found to be upregulated in patients with myeloid neoplasms, but its role in normal hematopoiesis is still unknown.
View Article and Find Full Text PDFMegakaryopoiesis is a complex, stepwise process that takes place largely in the bone marrow. At the apex of the hierarchy, hematopoietic stem cells undergo a number of lineage commitment decisions that ultimately lead to the production of polyploid megakaryocytes. On average, megakaryocytes release 10(11) platelets per day into the blood that repair vascular injuries and prevent excessive bleeding.
View Article and Find Full Text PDFPrimary myelofibrosis (PMF) is a Myeloproliferative Neoplasm (MPN) characterized by megakaryocyte hyperplasia, progressive bone marrow fibrosis, extramedullary hematopoiesis and transformation to Acute Myeloid Leukemia (AML). A number of phenotypic driver (JAK2, CALR, MPL) and additional subclonal mutations have been described in PMF, pointing to a complex genomic landscape. To discover novel genomic lesions that can contribute to disease phenotype and/or development, gene expression and copy number signals were integrated and several genomic abnormalities leading to a concordant alteration in gene expression levels were identified.
View Article and Find Full Text PDFPrimary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by megakaryocyte (MK) hyperplasia, bone marrow fibrosis, and abnormal stem cell trafficking. PMF may be associated with somatic mutations in JAK2, MPL, or CALR. Previous studies have shown that abnormal MKs play a central role in the pathophysiology of PMF.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) are located in the bone marrow in a specific microenvironment referred as the hematopoietic stem cell niche, where HSCs interact with a variety of stromal cells. Though several components of the stem cell niche have been identified, the regulatory mechanisms through which such components regulate the stem cell fate are still unknown. In order to address this issue, we investigated how osteoblasts (OBs) can affect the molecular and functional phenotype of Hematopoietic Stem/Progenitor Cells (HSPCs) and vice versa.
View Article and Find Full Text PDFHistone deacetylase inhibitors represent a family of targeted anticancer compounds that are widely used against hematological malignancies. So far little is known about their effects on normal myelopoiesis. Therefore, in order to investigate the effect of histone deacetylase inhibitors on the myeloid commitment of hematopoietic stem/progenitor cells, we treated CD34(+) cells with valproic acid (VPA).
View Article and Find Full Text PDF