Publications by authors named "Valentina Pendolino"

Aims: Severe hypoglycaemia requiring emergency medical services remains prevalent despite advances in all aspects of diabetes self-management. Real-time continuous glucose monitoring (RTCGM) technologies can reduce the risk of severe hypoglycaemia for adults with type 1 diabetes, but the impact of these devices has not been assessed in the acute phase after an episode of severe hypoglycaemia.

Methods: We recruited and randomised 35 adults with type 1 diabetes in the acute period after an episode of severe hypoglycaemia requiring emergency medical services and randomised participants to RTCGM with alerts and alarms, or usual care with self-monitored blood glucose for 12 weeks with intermittent blinded CGM.

View Article and Find Full Text PDF

Aims/hypothesis: Out-of-hospital hypoglycaemia is a common complication for individuals with diabetes mellitus and represents a significant burden to emergency medical services (EMS). We aim to identify the factors associated with receiving parenteral treatment and hospital conveyance.

Methods: We retrospectively analysed a 6-month data set of all London EMS hypoglycaemia.

View Article and Find Full Text PDF

Cortical GABAergic interneurons are generated in large numbers in the ganglionic eminences and migrate into the cerebral cortex during embryogenesis. At early postnatal stages, during neuronal circuit maturation, autonomous and activity-dependent mechanisms operate within the cortex to adjust cell numbers by eliminating naturally occurring neuron excess. Here, we show that when cortical interneurons are generated in aberrantly high numbers-due to a defect in precursor cell proliferation during embryogenesis-extra parvalbumin interneurons persist in the postnatal mouse cortex during critical periods of cortical network maturation.

View Article and Find Full Text PDF

Inhibitory synaptic transmission requires the targeting and stabilization of GABA receptors (GABARs) at synapses. The mechanisms responsible remain poorly understood, and roles for transmembrane accessory proteins have not been established. Using molecular, imaging, and electrophysiological approaches, we identify the tetraspanin LHFPL4 as a critical regulator of postsynaptic GABAR clustering in hippocampal pyramidal neurons.

View Article and Find Full Text PDF

Background: Recent studies support the therapeutic utility of repetitive transcranial magnetic stimulation in Parkinson's disease (PD), whose progression is correlated with loss of corticostriatal long-term potentiation and long-term depression. Glial cell activation is also a feature of PD that is gaining increasing attention in the field because astrocytes play a role in chronic neuroinflammatory responses but are also able to manage dopamine (DA) levels.

Methods: Intermittent theta-burst stimulation protocol was applied to study the effect of therapeutic neuromodulation on striatal DA levels measured by means of in vivo microdialysis in 6-hydroxydopamine-hemilesioned rats.

View Article and Find Full Text PDF

L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias (LIDs) represent the main side effect of Parkinson's Disease (PD) therapy. Among the various pharmacological targets for novel therapeutic approaches, the serotonergic system represents a promising one. In experimental models of PD and in PD patients the development of abnormal involuntary movements (AIMs) and LIDs, respectively, is accompanied by the impairment of bidirectional synaptic plasticity in key structures such as striatum.

View Article and Find Full Text PDF

Memantine is an open channel blocker that antagonizes NMDA receptors reducing the inappropriate calcium (Ca(2+)) influx occurring in presence of moderately increased glutamate levels. At the same time, memantine has the ability to preserve the transient physiological activation of NMDA receptor, essential for learning and memory formation at synaptic level. In the present study we investigated the effects exerted by memantine on striatal synaptic plasticity in rat striatal spiny projection neurons (SPNs).

View Article and Find Full Text PDF

Mechanisms of gender-specific synaptic plasticity in the striatum, a brain region that controls motor, cognitive and psychiatric functions, remain unclear. Here we report that Rhes, a GTPase enriched in medium spiny neurons (MSNs) of striatum, alters the striatal cAMP/PKA signaling cascade in a gender-specific manner. While Rhes knockout (KO) male mice, compared to wild-type (WT) mice, had a significant basal increase of cAMP/PKA signaling pathway, the Rhes KO females exhibited a much stronger response of this pathway, selectively under the conditions of dopamine/adenosine-related drug challenge.

View Article and Find Full Text PDF

Parkinson's disease (PD) patients exhibit motor and non-motor symptoms that severely affect quality of life. Cognitive alterations in PD subjects have been related to both structural and functional hippocampal changes. Here we investigated the effects of the 6-hydroxydopamine (6-OHDA) lesion in the Medial Forebrain Bundle (MFB) on the hippocampus focusing on the Dentate Gyrus (DG).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied how environmental enrichment (EE) affects a mouse model prone to seizures, which simulates human neurodevelopmental disorders due to a genetic change in a protein called Bassoon.
  • After one month of EE starting at a specific age, they found that it reduced the severity of seizures and helped maintain important brain functions like long-term potentiation (LTP), which is key for memory and learning.
  • The findings suggest that EE can improve various functions in the hippocampus, making it beneficial for enhancing current treatment methods for similar conditions.
View Article and Find Full Text PDF

Background: Bidirectional long-term plasticity at the corticostriatal synapse has been proposed as a central cellular mechanism governing dopamine-mediated behavioral adaptations in the basal ganglia system. Balanced activity of medium spiny neurons (MSNs) in the direct and the indirect pathways is essential for normal striatal function. This balance is disrupted in Parkinson's disease and in l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID), a common motor complication of current pharmacotherapy of Parkinson's disease.

View Article and Find Full Text PDF

Apical neural progenitors (aNPs) drive neurogenesis by means of a program consisting of self-proliferative and neurogenic divisions. The balance between these two manners of division sustains the pool of apical progenitors into late neurogenesis, thereby ensuring their availability to populate the brain with terminal cell types. Using knockout and in utero electroporation mouse models, we report a key role for the microtubule-associated protein 600 (p600) in the regulation of spindle orientation in aNPs, a cellular event that has been associated with cell fate and neurogenesis.

View Article and Find Full Text PDF

Intrastriatal transplantation of dopaminergic neurons can restore striatal dopamine levels and improve parkinsonian deficits, but the mechanisms underlying these effects are poorly understood. Here, we show that transplants of dopamine neurons partially restore activity-dependent synaptic plasticity in the host striatal neurons. We evaluated synaptic plasticity in regions distal or proximal to the transplant (i.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of brain-derived neurotrophic factor (Bdnf) signaling in enkephalinergic striatopallidal neurons, particularly in the context of Huntington's disease.
  • It highlights how changes in Bdnf levels and its transport can make these neurons more vulnerable and affect their functions.
  • The findings show that disrupting Bdnf-TrkB signaling leads to increased movement, suggesting this pathway plays a crucial role in regulating locomotion by affecting the activity of specific neurons in response to signals.
View Article and Find Full Text PDF

Dopamine replacement with levodopa (L-DOPA) represents the mainstay of Parkinson’s disease (PD) therapy. Nevertheless, this well established therapeutic intervention loses efficacy with the progression of the disease and patients develop invalidating side effects, known in their complex as L-DOPA-induced dyskinesia (LID). Unfortunately, existing therapies fail to prevent LID and very few drugs are available to lessen its severity, thus representing a major clinical problem inPDtreatment.

View Article and Find Full Text PDF

In Parkinson's disease (PD), alteration of dopamine- (DA-) dependent striatal functions and pulsatile stimulation of DA receptors caused by the discontinuous administration of levodopa (L-DOPA) lead to a complex cascade of events affecting the postsynaptic striatal neurons that might account for the appearance of L-DOPA-induced dyskinesia (LID). Experimental models of LID have been widely used and extensively characterized in rodents and electrophysiological studies provided remarkable insights into the inner mechanisms underlying L-DOPA-induced corticostriatal plastic changes. Here we provide an overview of recent findings that represent a further step into the comprehension of mechanisms underlying maladaptive changes of basal ganglia functions in response to L-DOPA and associated to development of LID.

View Article and Find Full Text PDF

Repetitive transcranial magnetic stimulation (rTMS) in humans increases levels of dopamine (DA) in the vicinity of highly active corticostriatal terminals suggesting its use to alleviate symptoms in Parkinson's disease (PD). However, the effects of rTMS on corticostriatal plasticity have not been explored. Here we show that a single-session of cortical rTMS using intermittent theta-burst stimulation (iTBS) pattern increases striatal excitability and rescues corticostriatal long-term depression (LTD) in a significant number of field excitatory postsynaptic potentials (fEPSP) recorded from hemiparkinsonian rats.

View Article and Find Full Text PDF

Although patients with Parkinson's disease show impairments in cognitive performance even at the early stage of the disease, the synaptic mechanisms underlying cognitive impairment in this pathology are unknown. Hippocampal long-term potentiation represents the major experimental model for the synaptic changes underlying learning and memory and is controlled by endogenous dopamine. We found that hippocampal long-term potentiation is altered in both a neurotoxic and transgenic model of Parkinson's disease and this plastic alteration is associated with an impaired dopaminergic transmission and a decrease of NR2A/NR2B subunit ratio in synaptic N-methyl-d-aspartic acid receptors.

View Article and Find Full Text PDF

The dorsal hippocampus is crucial for mammalian spatial memory, but its exact role in item memory is still hotly debated. Recent evidence in humans suggested that the hippocampus might be selectively involved in item short-term memory to deal with an increasing memory load. In this study, we sought to test this hypothesis.

View Article and Find Full Text PDF

Coupling of spindle orientation to cellular polarity is a prerequisite for epithelial asymmetric cell divisions. The current view posits that the adaptor Inscuteable (Insc) bridges between Par3 and the spindle tethering machinery assembled on NuMALGNGαi(GDP), thus triggering apico-basal spindle orientation. The crystal structure of the Drosophila ortholog of LGN (known as Pins) in complex with Insc reveals a modular interface contributed by evolutionary conserved residues.

View Article and Find Full Text PDF

Striatal medium spiny neurons (MSNs) are divided into two subpopulations exerting distinct effects on motor behavior. Transgenic mice carrying bacterial artificial chromosome (BAC) able to confer cell type-specific expression of enhanced green fluorescent protein (eGFP) for dopamine (DA) receptors have been developed to characterize differences between these subpopulations. Analysis of these mice, in contrast with original pioneering studies, showed that striatal long-term depression (LTD) was expressed in indirect but not in the direct pathway MSNs.

View Article and Find Full Text PDF

Levodopa (L-DOPA)-induced dyskinesias represent the main side effect of the therapeutic strategy clinically used in Parkinson's disease (PD) treatment. The first beneficial "honeymoon" phase of L-DOPA therapy is followed by a phase of deterioration in which L-DOPA administration causes motor fluctuations in the drug efficacy ("on-off" state) and dyskinesias. Alterations of the composition and function of N-methyl-D-aspartate (NMDA) receptor represent one of the main causes for the striatal synaptic changes described in experimental model of dyskinesias.

View Article and Find Full Text PDF

The aim of the present study was to evaluate the role of the nitric oxide/cyclic guanosine monophosphate pathway in corticostriatal long-term depression induction in a model of levodopa-induced dyskinesia in experimental parkinsonism. Moreover, we have also analysed the possibility of targeting striatal phosphodiesterases to reduce levodopa-induced dyskinesia. To study synaptic plasticity in sham-operated rats and in 6-hydroxydopamine lesioned animals chronically treated with therapeutic doses of levodopa, recordings from striatal spiny neurons were taken using either intracellular recordings with sharp electrodes or whole-cell patch clamp techniques.

View Article and Find Full Text PDF

The two complexes of the mammalian target of rapamycin (mTOR), mTORC1 and mTORC2, have central functions in the integration of both extracellular and intracellular signals that are also critical players in the induction of post-ischemic long-term potentiation (i-LTP), a pathological form of plasticity inducible in striatal medium spiny neurons (MSNs) after a brief episode of in vitro ischemia. To evaluate the involvement of mTOR complexes during ischemia we analyzed the time course of i-LTP by intracellular recordings of MSNs from corticostriatal slices incubated with 1μM mTOR inhibitor rapamycin. Although rapamycin did not affect the amplitude and duration of ischemia-induced membrane depolarization it fully prevented i-LTP, leaving unaffected the capability to undergo activity-dependent LTP following high-frequency stimulation of corticostriatal fibers.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionh2j9tqvulennv6e8049hutjuhi8u28om): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once