Severe acute respiratory syndrome-related Coronavirus 2 (SARS-CoV-2) has infected more than 762 million people to date and has caused approximately 7 million deaths all around the world, involving more than 187 countries. Although currently available vaccines show high efficacy in preventing severe respiratory complications in infected patients, the high number of mutations in the S proteins of the current variants is responsible for the high level of immune evasion and transmissibility of the virus and the reduced effectiveness of acquired immunity. In this scenario, the development of safe and effective drugs of synthetic or natural origin to suppress viral replication and treat acute forms of COVID-19 remains a valid therapeutic challenge.
View Article and Find Full Text PDFA series of 1-(4-sulfamoylbenzoyl)piperidine-4-carboxamides deriving from substituted piperazines/benzylamines was designed, synthesized, and tested on human carbonic anhydrase (hCA). The inhibitory activity of the new sulfonamides was analyzed using acetazolamide (AAZ) as a standard inhibitor against hCA I, II, IX, and XII. Several sulfonamides showed both inhibitory activity at low nanomolar concentrations and selectivity against the cytosolic hCA II isoform, and the same trend was observed on the tumor-associated hCA IX and XII.
View Article and Find Full Text PDFCancer is a disease that can affect any organ and spread to other nearby or distant organs [...
View Article and Find Full Text PDFA small series of hydrazonobenzenesulfonamides was designed, synthesized and studied for their human carbonic anhydrase (hCA) inhibitory activity. The synthesized compounds were evaluated against hCA I, II, IX and XII isoforms using acetazolamide (AAZ) as the standard inhibitor. Various hydrazonosulfonamide derivatives showed inhibitory activity at low nanomolar levels with selectivity against the cytosolic hCA II isoform, as well as the transmembrane, tumor-associated enzymes hCA IX and XII.
View Article and Find Full Text PDFA series of 6- and 6,8-halocoumarin derivatives have been investigated as potential antiproliferative compounds against a panel of tumor and normal cell lines. Cytotoxic effects were determined by the MTT method. To investigate the potential molecular mechanism involved in the cytotoxic effect, apoptosis assay, cell cycle analysis, reactive oxygen species (ROS), and reduced glutathione analysis were performed.
View Article and Find Full Text PDFFatty acid amide hydrolase (FAAH) plays a key role in the control of cannabinoid signaling and it represents a promising therapeutic strategy for the treatment of a wide range of diseases, including neuropathic pain and chronic inflammation. Starting from kinetics experiments carried out in our previous work for the most potent inhibitor 2-amino-3-chloropyridine amide (TPA14), we have investigated its non-competitive mechanism of action using molecular dynamics, thermodynamic integration and QM-MM/GBSA calculations. The computational studies highlighted the impact of mutations on the receptor binding pockets and elucidated the molecular basis of the non-competitive inhibition mechanism of TPA14, which prevents the endocannabinoid anandamide (AEA) from reaching its pro-active conformation.
View Article and Find Full Text PDFHere we report a small library of hydrazinocarbonyl-ureido and thioureido benzenesulfonamide derivatives, designed and synthesized as potent and selective human carbonic anhydrase inhibitors (hCAIs). The synthesized compounds were evaluated against isoforms hCA I, II, IX and XII using acetazolamide (AAZ) as standard inhibitor. Several urea and thiourea derivatives showed inhibitory activity at low nanomolar levels with selectivity against the cytosolic hCA II isoform, as well as the transmembrane, tumor-associated enzymes hCA IX and XII.
View Article and Find Full Text PDFThe Enterovirus genus includes many viruses that are pathogenic in humans, including Coxsackie viruses and rhinoviruses, as well as the emerging enteroviruses D68 and A71. Currently, effective antiviral agents are not available for the treatment or prevention of enterovirus infections, which remain an important threat to public health. We recently identified a series of quinoxaline derivatives that were provento be potent inhibitors of coxsackievirus B5, the most common and a very important human pathogen belonging to the enterovirus genus.
View Article and Find Full Text PDFCompounds combining dual inhibitory action against FAAH and cyclooxygenase (COX) may be potentially useful analgesics. Here, we describe a novel flurbiprofen analogue, N-(3-bromopyridin-2-yl)-2-(2-fluoro-(1,1'-biphenyl)-4-yl)propanamide (). The compound is a competitive, reversible inhibitor of FAAH with a K value of 13 nM and which inhibits COX activity in a substrate-selective manner.
View Article and Find Full Text PDFThe tumor microenvironment is crucial for the growth of cancer cells, triggering particular biochemical and physiological changes, which frequently influence the outcome of anticancer therapies. The biochemical rationale behind many of these phenomena resides in the activation of transcription factors such as hypoxia-inducible factor 1 and 2 (HIF-1/2). In turn, the HIF pathway activates a number of genes including those involved in glucose metabolism, angiogenesis, and pH regulation.
View Article and Find Full Text PDFThree new ruthenium(II) complexes were synthesized from different substituted isothiazole ligands 5-(methylamino)-3-pyrrolidine-1-ylisothiazole-4-carbonitrile (1), 5-(methylamino)-3-(4-methylpiperazine-1-yl)isothiazole-4-carbonitrile (2) and 5-(methylamino)-3-morpholine-4-ylisothiazole-4-carbonitrile (3): [Ru(η-p-cymene)Cl(L1)]·HO (4), [Ru(η-p-cymene)Cl(L2)] (5) and [Ru(η-p-cymene)Cl(L3)] (6). All complexes were characterized by IR, UV-Vis, NMR spectroscopy, and elemental analysis. The molecular structures of all ligands and complexes 4 and 6 were determined by an X-ray.
View Article and Find Full Text PDFIn experimental animals, inhibition of fatty acid amide hydrolase (FAAH) reduces the gastrointestinal damage produced by non-steroidal anti-inflammatory agents that act by inhibition of cyclooxygenase (COX). This suggests that compounds able to inhibit both enzymes may be potentially useful therapeutic agents. In the present study, we have investigated eight novel amide analogues of carprofen, ketoprofen and fenoprofen as potential FAAH/COX dual action inhibitors.
View Article and Find Full Text PDFInduction of apoptosis is a common chemotherapeutic mechanism to kill cancer cells The thiazole system has been reported over the past decades as a building block for the preparation of anticancer agents. A novel series of 2-arylalkylamino-4-amino-5-(3',4',5'-trimethoxybenzoyl)-thiazole derivatives designed as dual inhibitors of tubulin and cyclin-dependent kinases (CDKs) were synthesized and evaluated for their antiproliferative activity in vitro against two cancer cell lines and, for selected highly active compounds, for interactions with tubulin and cyclin-dependent kinases and for cell cycle and apoptosis effects. Structure-activity relationships were elucidated for various substituents at the 2-position of the thiazole skeleton.
View Article and Find Full Text PDFIn the search of multifunctional compounds we designed benzimidazole derivatives endowed with phenolic hydroxy groups and a hydrazone moiety as potential radical-scavenger and the antioxidant agents. The target molecules have been prepared by a simple synthetic procedure and tested for their antioxidant activity by DPPH, FRAP, and ORAC test, for photoprotective activity against UV rays and for antiproliferative activity against Colo-38 melanoma cells. Furthermore, two different dermocosmetic formulations were prepared with the compounds endowed with the best antioxidant and photoprotective profile and their release from formulation evaluated using Franz Cells system.
View Article and Find Full Text PDFInhibition of fatty acid amide hydrolase (FAAH) reduces the gastrointestinal damage produced by non-steroidal anti-inflammatory agents such as sulindac and indomethacin in experimental animals, suggesting that a dual-action FAAH-cyclooxygenase (COX) inhibitor could have useful therapeutic properties. Here, we have investigated 12 novel amide analogues of ibuprofen as potential dual-action FAAH/COX inhibitors. -(3-Bromopyridin-2-yl)-2-(4-isobutylphenyl)propanamide (Ibu-AM68) was found to inhibit the hydrolysis of [H]anandamide by rat brain homogenates by a reversible, mixed-type mechanism of inhibition with a K value of 0.
View Article and Find Full Text PDFThe persistence of the AIDS epidemic, and the life-long treatment required, indicate the constant need of novel HIV-1 inhibitors. In this scenario the HIV-1 Reverse Transcriptase (RT)-associated ribonuclease H (RNase H) function is a promising drug target. Here we report a series of compounds, developed on the 2-amino-6-(trifluoromethyl)nicotinic acid scaffold, studied as promising RNase H dual inhibitors.
View Article and Find Full Text PDFHerein we report on a new series of hydrazidoureidobenzensulfonamides investigated as inhibitors of the cytosolic human (h) hCA I and II isoforms, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. The reported derivatives contain a 4-substituted piperidine fragment in which the hydrazidoureido linker has been involved as spacer between the benzenesulfonamide fragment which binds the zinc ion from the active site, and the tail of the inhibitor. Depending on the substitution pattern at the piperidine ring, low nanomolar inhibitors were detected against hCA II, hCA IX and hCA XII, making the new class of sulfonamides of interest for various pharmacologic applications.
View Article and Find Full Text PDFWe report here a thorough structure-activity relationship (SAR) with piperazinylureido sulfamates as inhibitors of human (h) carbonic anhydrase (CA, EC 4.2.1.
View Article and Find Full Text PDFThree series of arylbenzimidazole derivatives 3-40, 45 have been simply synthesized and tested for their antioxidant capacity. The 2-arylbenzimidazoles were tested against various radicals by the DPPH, FRAP and ORAC tests and showed different activity profiles. It has been observed that the number and position of the hydroxy groups on the 2-aryl portion and the presence of a diethylamino group or a 2-styryl group are related to a good antioxidant capacity.
View Article and Find Full Text PDFEur J Med Chem
November 2019
Four new series of aromatic sulfamates were synthesized and investigated for the inhibition of four human (h) isoforms of zinc enzyme carbonic anhydrase (CA, EC 4.2.1.
View Article and Find Full Text PDFTwo new piperazinyl-ureido single ring aryl sulfamate-based inhibitor series were designed against the emerging oncology drug target steroid sulfatase (STS), for which there are existing potent steroidal and non-steroidal agents in clinical trials. 4-(Piperazinocarbonyl)aminosulfamates (5-31) were obtained by reacting 4-hydroxyarylamines with phenylchloroformate, subsequent sulfamoylation of the resulting hydroxyarylcarbamates and coupling of the product with 1-substituted piperazines. Pyrimidinyl-piperazinourea sulfamates (35-42) were synthesized by pyrimidine ring closure of 4-Boc-piperazine-1-carboxamidine with 3-(dimethylamino)propenones, deprotection and coupling with the sulfamoylated building block.
View Article and Find Full Text PDF