Objectives: Normal cellular function requires a rate of ATP production sufficient to meet demand. In most neurodegenerative diseases (including Amyotrophic Lateral Sclerosis [ALS]), mitochondrial dysfunction is postulated raising the possibility of impaired ATP production and a need for compensatory maneuvers to sustain the ATP production/demand balance. We investigated intermediary metabolism of neurons expressing familial ALS (fALS) genes and interrogated the functional consequences of glycolysis genes in fitness assays and neuronal survival.
View Article and Find Full Text PDFA hexanucleotide repeat expansion in the gene is the most common cause of inherited amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Unconventional translation of the repeat produces dipeptide repeat proteins (DPRs). Previously, we showed that the DPRs PR50 and GR50 are highly toxic when expressed in , and this toxicity depends on nuclear localization of the DPR.
View Article and Find Full Text PDFA large fraction of epigenetically silent heterochromatin is anchored to the nuclear periphery via 'tethering proteins' that function to bridge heterochromatin and the nuclear membrane or nuclear lamina. We previously identified a human tethering protein, PRR14, that binds heterochromatin through an N-terminal domain, but the mechanism and regulation of nuclear lamina association remained to be investigated. Here we identify an evolutionarily conserved PRR14 nuclear lamina binding domain (LBD) that is both necessary and sufficient for positioning of PRR14 at the nuclear lamina.
View Article and Find Full Text PDFGenome-Wide Association Studies (GWAS) and subsequent fine-mapping studies (>50) have implicated single nucleotide polymorphisms (SNPs) located at the CCDC170/C6ORF97-ESR1 locus (6q25.1) as being associated with the risk of breast cancer. Surprisingly, our analysis using genome-wide differential allele-specific expression (DASE), an indicator for breast cancer susceptibility, suggested that the genetic alterations of CCDC170, but not ESR1, account for GWAS-associated breast cancer risk at this locus.
View Article and Find Full Text PDF