Publications by authors named "Valentina Marcon"

The flow patterns generated by the coalescence of aqueous ethanol droplets with a water reservoir are investigated using molecular dynamics simulations. The influence of surface tension gradient, which leads to the spreading of the droplet along the liquid-vapor interface of the reservoir, is studied by changing the ethanol concentration of the droplet. The internal circulation (vortex strength) of the droplet and the reservoir are analyzed separately.

View Article and Find Full Text PDF

Molecular simulations of soft matter systems have been performed in recent years using a variety of systematically coarse-grained models. With these models, structural or thermodynamic properties can be quite accurately represented while the prediction of dynamic properties remains difficult, especially for multi-component systems. In this work, we use constraint molecular dynamics simulations for calculating dissipative pair forces which are used together with conditional reversible work (CRW) conservative forces in dissipative particle dynamics (DPD) simulations.

View Article and Find Full Text PDF

By means of multiscale hierarchical modeling we study the real time evolution of low-molecular-weight polystyrene, below the glass transition temperature, in contact with its solvent, toluene. We observe two concurrent phenomena taking place: (1) the solvent diffuses into the polymer by a Case II mechanism, leading to osmotic driven swelling and progressive chain dilution (inside-out mechanism); (2) polymer chains are solvated, detach from the interface and move into the solvent before the film is completely swollen (outside-in mechanism). From our simulations we conclude that, below the entanglement length, a thin swollen layer, also observed in previous experiments, forms almost instantaneously, which allows for the outside-in mechanism to start a few tens of nanoseconds after the polymer-solvent initial contact.

View Article and Find Full Text PDF

Although experimental and theoretical studies have addressed the question of the wetting properties of graphene, the actual value of the contact angle of water on an isolated graphene monolayer remains unknown. While recent experimental literature indicates that the contact angle of water on graphite is in the range 90-95°, it has been suggested that the contact angle on graphene may either be as high as 127° or moderately enhanced in comparison with graphite. With the support of classical molecular dynamics simulations using empirical force-fields, we develop an argumentation to show that the value of 127° is an unrealistic estimate and that a value of the order of 95-100° should be expected.

View Article and Find Full Text PDF

Systematically coarse grained models for complex fluids usually lack chemical and thermodynamic transferability. Efforts to improve transferability require the development of effective potentials with unequivocal physical significance. In this paper, we introduce conditional reversible work (CRW) potentials that describe nonbonded interactions in coarse grained models at the pair level.

View Article and Find Full Text PDF

Discotic mesophases are known for their ability to self-assemble into columnar structures and can serve as semiconducting molecular wires. Charge carrier mobility along these wires strongly depends on molecular packing, which is controlled by intermolecular interactions. By combining wide-angle X-ray scattering experiments with molecular dynamics simulations, we elucidate packing motifs of a perylene tetracarboxdiimide derivative, a task which is hard to achieve by using a single experimental or theoretical technique.

View Article and Find Full Text PDF

Discotic liquid crystals are a promising class of materials for molecular electronics thanks to their self-organization and charge transporting properties. The best discotics so far are built around the coronene unit and possess six-fold symmetry. In the discotic phase six-fold-symmetric molecules stack with an average twist of 30 degrees, whereas the angle that would lead to the greatest electronic coupling is 60 degrees.

View Article and Find Full Text PDF

Combining atomistic molecular dynamic simulations, Marcus-Hush theory description of charge transport rates, and master equation description of charge dynamics, we correlate the temperature-driven change of the mesophase structure with the change of charge carrier mobilities in columnar phases of hexabenzocoronene derivatives. The time dependence of fluctuations in transfer integrals shows that static disorder is predominant in determining charge transport characteristics. Both site energies and transfer integrals are distributed because of disorder in the molecular arrangement.

View Article and Find Full Text PDF

Using atomistic molecular dynamic simulations we study the transitions between solid herringbone and liquid crystalline hexagonal mesophases of discotic liquid crystals formed by hexabenzocoronene derivatives. Combining a united atom representation for the side chains with the fully atomistic description of the core, we study the effect of side chain substitution on the transition temperatures as well as molecular ordering in the mesophases. Our study rationalizes the differences in charge carrier mobilities in the herringbone and hexagonal mesophases, which is predominantly due to the better rotational register of the neighboring molecules.

View Article and Find Full Text PDF

Using variable atomic numbers within molecular grand-canonical ensemble theory, the highest occupied Kohn-Sham eigenvalue of isoelectronic benzene derivatives is tuned. The performed transmutational changes correspond to the iterative doping with boron and nitrogen. The molecular Fukui function proves to be a reliable index in order to predict the changes in the highest occupied molecular orbital eigenvalue due to doping.

View Article and Find Full Text PDF

A correlation is established between the molecular structure and charge mobility of discotic mesophases of hexabenzocoronene derivatives by combining electronic structure calculations, molecular dynamics, and kinetic Monte Carlo simulations. It is demonstrated that this multiscale approach can provide an accurate ab initio description of charge transport in organic materials.

View Article and Find Full Text PDF

Hot-wall epitaxy and molecular-beam epitaxy have been employed for growing quaterthiophene thin films on the (010) cleavage face of potassium hydrogen phthalate, and the results are compared in terms of film properties and growth mode. Even if there is no geometrical match between substrate and overlayer lattices, these films are epitaxially oriented. To investigate the physical rationale for this strong orientation effect, optical microscopy, atomic force microscopy, and X-ray diffraction are employed.

View Article and Find Full Text PDF

Using atomistic molecular dynamics simulations we study solid and liquid crystalline columnar discotic phases formed by alkyl-substituted hexabenzocoronene mesogens. Correlations between the molecular structure, packing, and dynamical properties of these materials are established.

View Article and Find Full Text PDF

Growth studies of ultrahigh vacuum deposited thin films are often carried out ex situ, assuming the total film mass reached at the end of the deposition is preserved in the subsequent stages of film preparation. Many kinetic models commonly adopted to analyze quantitatively the mechanism of growth take into account the role of the deposition rate of molecules on the substrate surface, their diffusion, and their possible desorption. Within this framework, a strong simplification (and approximation) of the model is achieved when considering a regime of complete condensation (i.

View Article and Find Full Text PDF

We describe the application of molecular modeling to study problems related to the packing and conformation of oligofluorene molecules in the solid state. First of all, we describe an improved force field for oligofluorenes. The model is based on the MM3 force field for the intramolecular degrees of freedom, but it relies on ab initio calculations for the torsion potential between two monomers and the electrostatic interactions.

View Article and Find Full Text PDF

We describe a general simulation protocol for the evaluation of the surface free energies of molecular crystals, which are of broad interest for phenomena such as polymorphism and crystal growth. The method has been applied to selected surfaces of two polymorphs of tetrathiophene. The simulations highlight an important temperature-dependent entropic contribution to the surface free energies, which is not included in widely used static simulations of surface structure and energetics.

View Article and Find Full Text PDF