Fusarium poae is one of the Fusarium species commonly detected in wheat kernels affected by Fusarium Head Blight. Fusarium poae produces a wide range of mycotoxins including nivalenol (NIV). The effect of temperature on colony growth and NIV production was investigated in vitro at 5-40 °C with 5 °C intervals.
View Article and Find Full Text PDFForecasting models for mycotoxins in cereal grains during cultivation are useful for pre-harvest and post-harvest mycotoxin management. Some of such models for deoxynivalenol (DON) in wheat, using two different modelling techniques, have been published. This study aimed to compare and cross-validate three different modelling approaches for predicting DON in winter wheat using data from the Netherlands as a case study.
View Article and Find Full Text PDFThis research has produced new quantitative data on the sporulation and T-2+HT-2 toxin production that could be further integrated to develop a comprehensive disease or toxin prediction model for Fusarium langsethiae and Fusarium sporotrichioides. Experiments were conducted to determine the effect of temperature or incubation time on sporulation and the effect of temperature on T-2+HT-2 toxin production of strains of the two species. F.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2016
Fusarium graminearum is the predominant component of the Fusarium head blight complex of wheat. F. graminearum ascospores, which initiate head infection, mature in perithecia on crop residues and become airborne.
View Article and Find Full Text PDFFusarium graminearum is a predominant component of the Fusarium head blight (FHB) complex of small grain cereals. Ascosporic infection plays a relevant role in the spread of the disease. A 3-year study was conducted on ascospore discharge.
View Article and Find Full Text PDF