Background: The aim of this work was to investigate the serum amino acid (AA) changes after a breath-hold diving (BH-diving) training session under several aspects including energy need, fatigue tolerance, nitric oxide (NO) production, antioxidant synthesis and hypoxia adaptation. Twelve trained BH-divers were investigated during an open sea training session and sampled for blood 30 min before the training session, 30 min and 4 h after the training session. Serum samples were assayed for AA changes related to energy request (alanine, histidine, isoleucine, leucine, lysine, methionine, proline threonine, valine), fatigue tolerance (ornithine, phenylalanine, tyrosine), nitric oxide production (citrulline), antioxidant synthesis (cystine, glutamate, glycine) and hypoxia adaptation (serine, taurine).
View Article and Find Full Text PDF(1) Background: SCUBA diving can influence changes of several hematological parameters (HP) but the changes of HP in the decompression phases are still unclear. The aim of this study was to investigate any possible relationship between HP and predisposition to inert gas bubble formation after a single recreational dive. (2) Methods: Blood, obtained from 32 expert SCUBA divers, was tested for differences in white blood cells (WBC), granulocytes (GRAN), lymphocytes (LYM), and monocytes (MONO), red blood cells (RBC), and platelets (PLT) between bubblers (B) and non-bubblers (NB).
View Article and Find Full Text PDFBackground: Breath-hold diving (BH-diving) is associated to extreme environmental conditions, prolonged physical activity, and complex adaptation mechanisms to supply enough O to vital organs. Consequently, one of the biggest effects could be an increased exercise-induced muscle fatigue, in both skeletal and cardiac muscles that can induce an increase of muscles injury markers including creatine kinase (CK), aspartate transferase (AST), and alanine transferase (ALT) when concerning the skeletal muscle, cardiac creatine kinase isoenzyme (CK-MBm) and cardiac troponin I (cTnI) when concerning the cardiac muscle, and lactate dehydrogenase (LDH) as index of muscle stress. The aim of this study is to investigate serum cardiac and skeletal muscle markers before and after a BH-diving training session.
View Article and Find Full Text PDFIntroduction: Nitric oxide (NO) is an essential signaling molecule modulating the endothelial adaptation during breath-hold diving (BH-diving). This study aimed to investigate changes in NO derivatives (NOx) and total antioxidant capacity (TAC), searching for correlations with different environmental and hyperbaric exposure.
Materials And Methods: Blood samples were obtained from 50 breath-hold divers (BH-divers) before, and 30 and 60 min after the end of training sessions performed both in a swimming pool or the sea.
Background: Several mechanisms allow humans to resist the extreme conditions encountered during breath-hold diving. Available nitric oxide (NO) is one of the major contributors to such complex adaptations at depth and oxidative stress is one of the major collateral effects of diving. Due to technical difficulties, these biomarkers have not so far been studied while at depth.
View Article and Find Full Text PDF