Publications by authors named "Valentina Giannini"

Background And Objective: Transformer, which is notable for its ability of global context modeling, has been used to remedy the shortcomings of Convolutional neural networks (CNN) and break its dominance in medical image segmentation. However, the self-attention module is both memory and computational inefficient, so many methods have to build their Transformer branch upon largely downsampled feature maps or adopt the tokenized image patches to fit their model into accessible GPUs. This patch-wise operation restricts the network in extracting pixel-level intrinsic structural or dependencies inside each patch, hurting the performance of pixel-level classification tasks.

View Article and Find Full Text PDF

Hepatic diffuse conditions and focal liver lesions represent two of the most common scenarios to face in everyday radiological clinical practice. Thanks to the advances in technology, radiology has gained a central role in the management of patients with liver disease, especially due to its high sensitivity and specificity. Since the introduction of computed tomography (CT) and magnetic resonance imaging (MRI), radiology has been considered the non-invasive reference modality to assess and characterize liver pathologies.

View Article and Find Full Text PDF

Purpose: To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies.

Methods: We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights.

View Article and Find Full Text PDF

In the last years, several studies demonstrated that low-aggressive (Grade Group (GG) ≤ 2) and high-aggressive (GG ≥ 3) prostate cancers (PCas) have different prognoses and mortality. Therefore, the aim of this study was to develop and externally validate a radiomic model to noninvasively classify low-aggressive and high-aggressive PCas based on biparametric magnetic resonance imaging (bpMRI). To this end, 283 patients were retrospectively enrolled from four centers.

View Article and Find Full Text PDF

Objectives: The aims of this study are to develop and validate a clinical decision support system based on demographics, prostate-specific antigen (PSA), microRNA (miRNA), and MRI for the detection of prostate cancer (PCa) and clinical significant (cs) PCa, and to assess if this system performs better compared to MRI alone.

Methods: This retrospective, multicenter, observational study included 222 patients (mean age 66, range 46-75 years) who underwent prostate MRI, miRNA (let-7a-5p and miR-103a-3p) assessment, and biopsy. Monoparametric and multiparametric models including age, PSA, miRNA, and MRI outcome were trained on 65% of the data and then validated on the remaining 35% to predict both PCa (any Gleason grade [GG]) and csPCa (GG ≥ 2 vs GG = 1/negative).

View Article and Find Full Text PDF

High-resolution intraoperative PET/CT specimen imaging, coupled with prostate-specific membrane antigen (PSMA) molecular targeting, holds great potential for the rapid ex vivo identification of disease localizations in high-risk prostate cancer patients undergoing surgery. However, the accurate analysis of radiotracer uptake would require time-consuming manual volumetric segmentation of 3D images. The aim of this study was to test the feasibility of using machine learning to perform automatic nodal segmentation of intraoperative Ga-PSMA-11 PET/CT specimen images.

View Article and Find Full Text PDF

Objectives: To develop a mutation-based radiomics signature to predict response to imatinib in Gastrointestinal Stromal Tumors (GISTs).

Methods: Eighty-two patients with GIST were enrolled in this retrospective study, including 52 patients from one center that were used to develop the model, and 30 patients from a second center to validate it. Reference standard was the mutational status of tyrosine-protein kinase (KIT) and platelet-derived growth factor α (PDGFRA).

View Article and Find Full Text PDF

Radiomics-based systems could improve the management of oncological patients by supporting cancer diagnosis, treatment planning, and response assessment. However, one of the main limitations of these systems is the generalizability and reproducibility of results when they are applied to images acquired in different hospitals by different scanners. Normalization has been introduced to mitigate this issue, and two main approaches have been proposed: one rescales the image intensities (), the other the feature distributions for each center ().

View Article and Find Full Text PDF

Artificial intelligence applied to medical image analysis has been extensively used to develop non-invasive diagnostic and prognostic signatures. However, these imaging biomarkers should be largely validated on multi-center datasets to prove their robustness before they can be introduced into clinical practice. The main challenge is represented by the great and unavoidable image variability which is usually addressed using different pre-processing techniques including spatial, intensity and feature normalization.

View Article and Find Full Text PDF

The main therapeutic options for colorectal cancer are surgical resection and adjuvant chemotherapy in non-metastatic disease. However, the evaluation of the overall adjuvant chemotherapy benefit in patients with a high risk of recurrence is challenging. Radiological images can represent a source of data that can be analyzed by using automated computer-based techniques, working on numerical information coded within Digital Imaging and Communications in Medicine files: This image numerical analysis has been named "radiomics".

View Article and Find Full Text PDF

In recent years, researchers have explored new ways to obtain information from pathological tissues, also exploring non-invasive techniques, such as virtual biopsy (VB). VB can be defined as a test that provides promising outcomes compared to traditional biopsy by extracting quantitative information from radiological images not accessible through traditional visual inspection. Data are processed in such a way that they can be correlated with the patient's phenotypic expression, or with molecular patterns and mutations, creating a bridge between traditional radiology, pathology, genomics, and artificial intelligence (AI).

View Article and Find Full Text PDF

The aim of the study is to present and tune a fully automatic deep learning algorithm to segment colorectal cancers (CRC) on MR images, based on a U-Net structure. It is a multicenter study, including 3 different Italian institutions, that used 4 different MRI scanners. Two of them were used for training and tuning the systems, while the other two for the validation.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) has a growing role in the clinical workup of prostate cancer. However, manual three-dimensional (3D) segmentation of the prostate is a laborious and time-consuming task. In this scenario, the use of automated algorithms for prostate segmentation allows us to bypass the huge workload of physicians.

View Article and Find Full Text PDF

Background: Pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer (LARC) is achieved in 15-30% of cases. Our aim was to implement and externally validate a magnetic resonance imaging (MRI)-based radiomics pipeline to predict response to treatment and to investigate the impact of manual and automatic segmentations on the radiomics models.

Methods: Ninety-five patients with stage II/III LARC who underwent multiparametric MRI before chemoradiotherapy and surgical treatment were enrolled from three institutions.

View Article and Find Full Text PDF

The purpose of this paper is to develop and validate a delta-radiomics score to predict the response of individual colorectal cancer liver metastases (lmCRC) to first-line FOLFOX chemotherapy. Three hundred one lmCRC were manually segmented on both CT performed at baseline and after the first cycle of first-line FOLFOX, and 107 radiomics features were computed by subtracting textural features of CT at baseline from those at timepoint 1 (TP1). LmCRC were classified as nonresponders (R-) if they showed progression of disease (PD), according to RECIST1.

View Article and Find Full Text PDF

In the last decades, MRI was proven a useful tool for the diagnosis and characterization of Prostate Cancer (PCa). In the literature, many studies focused on characterizing PCa aggressiveness, but a few have distinguished between low-aggressive (Gleason Grade Group (GG) <=2) and high-aggressive (GG>=3) PCas based on biparametric MRI (bpMRI). In this study, 108 PCas were collected from two different centers and were divided into training, testing, and validation set.

View Article and Find Full Text PDF

Automatic segmentation of the prostate on Magnetic Resonance Imaging (MRI) is one of the topics on which research has focused in recent years as it is a fundamental first step in the building process of a Computer aided diagnosis (CAD) system for cancer detection. Unfortunately, MRI acquired in different centers with different scanners leads to images with different characteristics. In this work, we propose an automatic algorithm for prostate segmentation, based on a U-Net applying transfer learning method in a bi-center setting.

View Article and Find Full Text PDF

Colorectal cancer (CRC) has the second-highest tumor incidence and is a leading cause of death by cancer. Nearly 20% of patients with CRC will have metastases (mts) at the time of diagnosis, and more than 50% of patients with CRC develop metastases during their disease. Unfortunately, only 45% of patients after a chemotherapy will respond to treatment.

View Article and Find Full Text PDF

In the last years, the widespread use of the prostate-specific antigen (PSA) blood examination to triage patients who will enter the diagnostic/therapeutic path for prostate cancer (PCa) has almost halved PCa-specific mortality. As a counterpart, millions of men with clinically insignificant cancer not destined to cause death are treated, with no beneficial impact on overall survival. Therefore, there is a compelling need to develop tools that can help in stratifying patients according to their risk, to support physicians in the selection of the most appropriate treatment option for each individual patient.

View Article and Find Full Text PDF

Recently, Computer Aided Diagnosis (CAD) systems have been proposed to help radiologists in detecting and characterizing Prostate Cancer (PCa). However, few studies evaluated the performances of these systems in a clinical setting, especially when used by non-experienced readers. The main aim of this study is to assess the diagnostic performance of non-experienced readers when reporting assisted by the likelihood map generated by a CAD system, and to compare the results with the unassisted interpretation.

View Article and Find Full Text PDF

While cross-sectional imaging has seen continuous progress and plays an undiscussed pivotal role in the diagnostic management and treatment planning of patients with rectal cancer, a largely unmet need remains for improved staging accuracy, assessment of treatment response and prediction of individual patient outcome. Moreover, the increasing availability of target therapies has called for developing reliable diagnostic tools for identifying potential responders and optimizing overall treatment strategy on a personalized basis. Radiomics has emerged as a promising, still fully evolving research topic, which could harness the power of modern computer technology to generate quantitative information from imaging datasets based on advanced data-driven biomathematical models, potentially providing an added value to conventional imaging for improved patient management.

View Article and Find Full Text PDF

Background: Urological guidelines recommend multiparametric magnetic resonance imaging (mpMRI) in men with a suspicion of prostate cancer (PCa). The resulting increase in MRI demand might place health care systems under substantial stress.

Objective: To determine whether single-plane biparametric MRI (fast MRI) workup could represent an alternative to mpMRI in the detection of clinically significant (cs) PCa.

View Article and Find Full Text PDF