Publications by authors named "Valentina Evdokimova"

Introduction: Pediatric sarcomas, including osteosarcoma (OS), Ewing sarcoma (EwS) and rhabdomyosarcoma (RMS) carry low somatic mutational burden and low MHC-I expression, posing a challenge for T cell therapies. Our previous study showed that mediators of monocyte maturation sensitized the EwS cell line A673 to lysis by HLA-A*02:01/CHM1-specific allorestricted T cell receptor (TCR) transgenic CD8 T cells (CHM1 CD8 T cells).

Methods: In this study, we tested a panel of monocyte maturation cytokines for their ability to upregulate immunogenic cell surface markers on OS, EwS and RMS cell lines, using flow cytometry.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell-derived nanoparticles that have attracted significant attention in the investigation of human health and disease, including cancer biology and its clinical management. Concerning cancer, EVs have been shown to influence numerous aspects of oncogenesis, including tumor proliferation and metastasis. EVs can augment the immune system and have been implicated in virtually all aspects of innate and adaptive immunity.

View Article and Find Full Text PDF

Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin.

View Article and Find Full Text PDF

We argue here that in many ways, Ewing sarcoma (EwS) is a unique tumor entity and yet, it shares many commonalities with other immunologically cold solid malignancies. From the historical perspective, EwS, osteosarcoma (OS) and other bone and soft-tissue sarcomas were the first types of tumors treated with the immunotherapy approach: more than 100 years ago American surgeon William B. Coley injected his patients with a mixture of heat-inactivated bacteria, achieving survival rates apparently higher than with surgery alone.

View Article and Find Full Text PDF

Y-box binding protein 1 is a member of the cold shock domain (CSD) protein family and one of the most studied proteins associated with a large number of human diseases. This review aims to critically reassess the growing number of pathological functions ascribed to YB-1 in the past decades. The focus is given on the important role of YB-1 and related CSD proteins in the physiology of normal cells.

View Article and Find Full Text PDF

Ewing sarcoma (EwS) is an aggressive pediatric cancer of bone and soft tissues characterized by scant T cell infiltration and predominance of immunosuppressive myeloid cells. Given the important roles of extracellular vesicles (EVs) in cancer-host crosstalk, we hypothesized that EVs secreted by EwS tumors target myeloid cells and promote immunosuppressive phenotypes. Here, EVs were purified from EwS and fibroblast cell lines and exhibited characteristics of small EVs, including size (100-170 nm) and exosome markers CD63, CD81, and TSG101.

View Article and Find Full Text PDF

The protein tyrosine phosphatase receptor PTPRN2 is expressed predominantly in endocrine and neuronal cells, where it functions in exocytosis. We found that its immature isoform proPTPRN2 is overexpressed in various cancers, including breast cancer. High proPTPRN2 expression was associated strongly with lymph node-positive breast cancer and poor clinical outcome.

View Article and Find Full Text PDF

Under cell stress, global protein synthesis is inhibited to preserve energy. One mechanism is to sequester and silence mRNAs in ribonucleoprotein complexes known as stress granules (SGs), which contain translationally silent mRNAs, preinitiation factors, and RNA-binding proteins. Y-box binding protein 1 (YB-1) localizes to SGs, but its role in SG biology is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The HOX11/TLX1 gene is linked to T cell acute lymphoblastic leukemia (T-ALL) due to a specific chromosome translocation, causing its inappropriate expression in T cells.
  • Research on mice with altered TLX1 expression and DNA repair deficiencies showed that these mice developed T-ALL and acute myeloid leukemia (AML) more quickly than normal ones.
  • The study found that thymocytes in these mice had increased proliferation and issues with cell cycle regulation, highlighting the combined effects of TLX1 dysregulation and faulty DNA repair in leukemia development.
View Article and Find Full Text PDF

The Y-box binding protein 1 (YB-1) is a DNA/RNA-binding nucleocytoplasmic shuttling protein whose regulatory effect on many DNA and RNA-dependent events is determined by its localization in the cell. We have shown previously that YB-1 is cleaved by 20S proteasome between E219 and G220, and the truncated N-terminal YB-1 fragment accumulates in the nuclei of cells treated with DNA damaging drugs. We proposed that appearance of truncated YB-1 in the nucleus may predict multiple drug resistance.

View Article and Find Full Text PDF

Insulin-like growth factor-binding protein 7 (IGFBP7) is a secreted factor that suppresses growth, and the abundance of IGFBP7 inversely correlates with tumor progression. Here, we showed that pretreatment of normal and breast cancer cells with IGFBP7 interfered with the activation and internalization of insulin-like growth factor 1 receptor (IGF1R) in response to insulin-like growth factors 1 and 2 (IGF-1/2), resulting in the accumulation of inactive IGF1R on the cell surface and blockade of downstream phosphatidylinositol 3-kinase (PI3K)-AKT signaling. Binding of IGFBP7 and IGF-1 to IGF1R was mutually exclusive, and the N-terminal 97 amino acids of IGFBP7 were important for binding to the extracellular portion of IGF1R and for preventing its activation.

View Article and Find Full Text PDF

Translational regulation is increasingly recognized as a critical mediator of gene expression. It endows cells with the ability to decide when a particular protein is expressed, thereby ensuring proper and prompt cellular responses to environmental cues. This ability to reprogram protein synthesis and to permit the translation of the respective regulatory messages is particularly important in complex changing environments, including embryonic development, wound healing and environmental stress.

View Article and Find Full Text PDF

Insulin-like growth factor binding protein 7 (IGFBP7) has been shown to be a tumor suppressor in a variety of cancers. We previously have shown that IGFBP7 expression is inversely correlated with disease progression and poor outcome in breast cancer. Overexpression of IGFBP7 in MDA-MB-468, a triple-negative breast cancer (TNBC) cell line, resulted in inhibition of growth and migration.

View Article and Find Full Text PDF

The insulin-like growth factor (IGF) 1 receptor (IGF1R) is an important therapeutic target under study in many cancers. Here, we describe a breast cancer model based on expression of the ETV6-NTRK3 (EN) chimeric tyrosine kinase that suggests novel therapeutic applications of IGF1R inhibitors in secretory breast cancers. Originally discovered in congenital fibrosarcomas with t(12;15) translocations, EN was identified subsequently in secretory breast carcinoma (SBC) which represent a variant of invasive ductal carcinoma.

View Article and Find Full Text PDF

Hyperproliferation induced by various oncogenic proteins, including activated Ras, is the most prominent and well characterized feature of cancerous cells. This property has been exploited in the development of the most successful anti-cancer treatments to target rapidly dividing cells. Here we argue that hyperproliferation may in fact be detrimental to survival during particular stages of cancer progression such as dissemination from primary tumor and establishing metastatic outgrowth.

View Article and Find Full Text PDF

Increased expression of the transcription/translation regulatory protein Y-box binding protein-1 (YB-1) is associated with cancer aggressiveness, particularly in breast carcinoma. Here we establish that YB-1 levels are elevated in invasive breast cancer cells and correlate with reduced expression of E-cadherin and poor patient survival. Enforced expression of YB-1 in noninvasive breast epithelial cells induced an epithelial-mesenchymal transition (EMT) accompanied by enhanced metastatic potential and reduced proliferation rates.

View Article and Find Full Text PDF

The interaction between the poly(A)-binding protein (PABP) and eukaryotic translational initiation factor 4G (eIF4G), which brings about circularization of the mRNA, stimulates translation. General RNA-binding proteins affect translation, but their role in mRNA circularization has not been studied before. Here, we demonstrate that the major mRNA ribonucleoprotein YB-1 has a pivotal function in the regulation of eIF4F activity by PABP.

View Article and Find Full Text PDF

Current models of translational regulation are mostly focused on how translational factors engage a messenger mRNA to the ribosome to initiate translation. Since the majority of mRNAs in eukaryotes are translated in a cap-dependent manner, the mRNA 5' cap-binding protein eIF4E was characterized as a key player responsible for the recruitment of mRNAs to the initiation complex. The availability of eIF4E is believed to be especially critical for translational activation of mRNAs with extensive secondary structures in their 5'UTRs, many of which code for labile regulatory proteins essential for cell growth or viability.

View Article and Find Full Text PDF

YB-1 is a broad-specificity RNA-binding protein that is involved in regulation of mRNA transcription, splicing, translation, and stability. In both germinal and somatic cells, YB-1 and related proteins are major components of translationally inactive messenger ribonucleoprotein particles (mRNPs) and are mainly responsible for storage of mRNAs in a silent state. However, mechanisms regulating the repressor activity of YB-1 are not well understood.

View Article and Find Full Text PDF

YB-1 is a DNA/RNA-binding nucleocytoplasmic shuttling protein whose regulatory effect on many DNA- and RNA-dependent events is determined by its localization in the cell. Distribution of YB-1 between the nucleus and the cytoplasm is known to be dependent on nuclear targeting and cytoplasmic retention signals located within the C-terminal portion of YB-1. Here, we report that YB-1 undergoes a specific proteolytic cleavage by the 20S proteasome, which splits off the C-terminal 105-amino-acid-long YB-1 fragment containing a cytoplasmic retention signal.

View Article and Find Full Text PDF

We have analyzed the chromosome 6q21 breakpoint of a non-constitutional t(6;15)(q21;q21) rearrangement in sporadic Wilms' tumor. This identified a novel gene encoding a protein with six N-terminal ankyrin repeats linked to a C-terminal HECT ubiquitin-protein ligase domain. We therefore designated this gene HACE1 (HECT domain and Ankyrin repeat Containing E3 ubiquitin-protein ligase 1).

View Article and Find Full Text PDF

Urokinase plasminogen activator (uPA) expression in breast cancer is associated with relapse and a reduction in disease-specific survival. Thus, efforts are under way to identify uPA inhibitors. By screening a chemical library of >1000 compounds, 17-allyaminogeldanamycin (17AAG) was identified as a potent inhibitor of uPA by the National Cancer Institute and is now in Phase I clinical trials.

View Article and Find Full Text PDF

The cytoplasmic messenger ribonucleoprotein particles of mammalian somatic cells contain the protein YB-1, also called p50, as a major core component. YB-1 is multifunctional and involved in regulation of mRNA transcription and translation. Our previous studies demonstrated that YB-1 stimulates initiation of translation in vitro at a low YB-1/mRNA ratio, whereas an increase of YB-1 bound to mRNA resulted in inhibition of protein synthesis in vitro and in vivo.

View Article and Find Full Text PDF