Publications by authors named "Valentina Di Meo"

Microbial fuel cells (MFCs) represent a promising technology for sustainable energy generation, which leverages the metabolic activities of microorganisms to convert organic substrates into electrical energy. In oil spill scenarios, hydrocarbonoclastic biofilms naturally form at the water-oil interface, creating a distinct environment for microbial activity. In this work, we engineered a novel MFC that harnesses these biofilms by strategically positioning the positive electrode at this critical junction, integrating the biofilm's natural properties into the MFC design.

View Article and Find Full Text PDF

This work presents the development of an automatic and customized measuring system employing sigma-delta analog-to-digital converters and transimpedance amplifiers for precise measurements of voltage and current signals generated by microbial fuel cells (MFCs). The system can perform multi-step discharge protocols to accurately measure the power output of MFCs, and has been calibrated to ensure high precision and low noise measurements. One of the key features of the proposed measuring system is its ability to conduct long-term measurements with variable time steps.

View Article and Find Full Text PDF

We apply surface-enhanced infrared absorption (SEIRA) spectroscopy to monitor the denaturation process of a surface-bound protein A monolayer. Our proposed platform relies on a plasmonic metasurface comprising different spatial subregions ("pixels") that are engineered to exhibit different resonances covering the infrared region of the electromagnetic spectrum that is matched to the vibrational modes of the Amide groups. Specifically, we are able to determine changes in the Amide I and Amide II vibration coupled modes, by comparing the SEIRA reflectance spectra pertaining to the native state and a denatured state induced by a pH variation.

View Article and Find Full Text PDF

The need for miniaturized biological sensors which can be easily integrated into medical needles and catheters for in vivo liquid biopsies with ever-increasing performances has stimulated the interest of researchers in lab-on-fiber (LOF) technology. LOF devices arise from the integration of functional materials at the nanoscale on the tip of optical fibers, thus endowing a simple optical fiber with advanced functionalities and enabling the realization of high-performance LOF biological sensors. Consequently, in 2017, we demonstrated the first optical fiber meta-tip (OFMT), consisting of the integration of plasmonic metasurfaces (MSs) on the optical fiber end-face which represented a major breakthrough along the LOF technology roadmap.

View Article and Find Full Text PDF

We propose and demonstrate a sensing platform based on plasmonic metasurfaces for the detection of very low concentrations of deoxyribo-nucleic acid (DNA) fragments. The platform relies on surface-enhanced infrared absorption spectroscopy, implemented a multispectral metasurface. Specifically, different regions ("pixels") are engineered so as to separately cover the medium-infrared range of the electromagnetic spectrum extending from the functional-groups to the fingerprint region of a single analyte.

View Article and Find Full Text PDF

In this work, we report on the first demonstration of Lab on Fiber (LOF) dosimeter for ionizing radiation monitoring at ultra-high doses. The new dosimeter consists in a metallo-dielectric resonator at sub-wavelength scale supporting localized surface plasmon resonances realized on the optical fiber (OF) tip. The resonating structure involves two gold gratings separated by a templated dielectric layer of poly(methyl methacrylate) (PMMA).

View Article and Find Full Text PDF