Objective: Eslicarbazepine acetate (ESL) is a once-daily oral antiseizure medication. Its safety and tolerability from clinical trials have been mostly confirmed by real-world data. The main purpose of this report is to provide an overview of the safety profile of ESL in the United Kingdom (UK) and Republic of Ireland (ROI).
View Article and Find Full Text PDFEur J Neurol
October 2023
Background And Purpose: Motor fluctuations are a significant driver of healthcare resource utilization (HCRU) in people with Parkinson's disease (pwPD). A common management strategy is to include catechol-O-methyltransferase (COMT) inhibition with either opicapone or entacapone in the levodopa regimen. However, to date, there has been a lack of head-to-head data comparing the two COMT inhibitors in real-world settings.
View Article and Find Full Text PDFUsher syndrome-associated retinitis pigmentosa (RP) causes progressive retinal degeneration, which has no cure. The pathomechanism of Usher type 1B (USH1B)-RP caused by MYO7A mutation remains elusive because of the lack of faithful animal models and limited knowledge of MYO7A function. Here, we analyzed 3D retinal organoids generated from USH1B patient-derived induced pluripotent stem cells.
View Article and Find Full Text PDFIrreversible photoreceptor cell death is a major cause of blindness in many retinal dystrophies. A better understanding of the molecular mechanisms underlying the progressive loss of photoreceptor cells remains therefore crucial. Abnormal expression of microRNAs (miRNAs) has been linked with the aetiology of a number of retinal dystrophies.
View Article and Find Full Text PDFLoss of photoreceptor cells due to retinal degeneration is one of the main causes of blindness in the developed world. Although there is currently no effective treatment, cell replacement therapy using stem-cell-derived photoreceptor cells may be a feasible future treatment option. In order to ensure safety and efficacy of this approach, robust cell isolation and purification protocols must be developed.
View Article and Find Full Text PDFLoss of cone photoreceptors, crucial for daylight vision, has the greatest impact on sight in retinal degeneration. Transplantation of stem cell-derived L/M-opsin cones, which form 90% of the human cone population, could provide a feasible therapy to restore vision. However, transcriptomic similarities between fetal and stem cell-derived cones remain to be defined, in addition to development of cone cell purification strategies.
View Article and Find Full Text PDFThe Polycomb group gene BMI1 is essential for efficient muscle regeneration in a mouse model of Duchenne muscular dystrophy, and its enhanced expression in adult skeletal muscle satellite cells ameliorates the muscle strength in this model. Here, we show that the impact of mild BMI1 overexpression observed in mouse models is translatable to human cells. In human myoblasts, BMI1 overexpression increases mitochondrial activity, leading to an enhanced energetic state with increased ATP production and concomitant protection against DNA damage both in vitro and upon xenografting in a severe dystrophic mouse model.
View Article and Find Full Text PDFStem cell therapies are being explored as potential treatments for retinal disease. How to replace neurons in a degenerated retina presents a continued challenge for the regenerative medicine field that, if achieved, could restore sight. The major issues are: (i) the source and availability of donor cells for transplantation; (ii) the differentiation of stem cells into the required retinal cells; and (iii) the delivery, integration, functionality, and survival of new cells in the host neural network.
View Article and Find Full Text PDFThe Polycomb group (PcG) protein Bmi1 is an essential epigenetic regulator of stem cell function during normal development and in adult organ systems. We show that mild up-regulation of Bmi1 expression in the adult stem cells of the skeletal muscle leads to a remarkable improvement of muscle function in a mouse model of Duchenne muscular dystrophy. The molecular mechanism underlying enhanced physiological function of Bmi1 depends on the injury context and it is mediated by metallothionein 1 (MT1)-driven modulation of resistance to oxidative stress in the satellite cell population.
View Article and Find Full Text PDFSkeletal muscle contains an identified resident stem cell population called the satellite cells. This cell is responsible for the majority of the postnatal growth and regenerative potential of skeletal muscle. Other cells do contribute to skeletal muscle regeneration and in cultures of minced whole muscle these cells are cultured along with the satellite cells and it is impossible to dissect out their contribution compared to the satellite cells.
View Article and Find Full Text PDFIn vitro activation of matrix metalloproteinase-9 (MMP-9) (Gelatinase B) with MMP-3 shows the presence of two different forms: an 82 kDa, N-terminal truncated form, and a 65 kDa, N- and C-terminal truncated form. So far the presence of the 65 kDa form has not been reported in vivo. Affinity chromatography was performed to separate MMP-9 from MMP-2 and immunoprecipitation to isolate ∼65 kDa MMP-9 from 82 kDa MMP-9 in sera of healthy donors.
View Article and Find Full Text PDFSatellite cells are the resident stem cell population of the adult mammalian skeletal muscle and they play a crucial role in its homeostasis and in its regenerative capacity after injury. We show here that the Polycomb group (PcG) gene Bmi1 is expressed in both the Pax7 positive (+)/Myf5 negative (-) stem cell population as well as the Pax7+/Myf5+ committed myogenic progenitor population. Depletion of Pax7+/Myf5- satellite cells with reciprocal increase in Pax7+/Myf5+ as well as MyoD positive (+) cells is seen in Bmi1-/- mice leading to reduced postnatal muscle fiber size and impaired regeneration upon injury.
View Article and Find Full Text PDFDuring early development of the central nervous system, there is an excessive outgrowth of neuronal projections, which later need to be refined to achieve precise connectivity. Axon pruning and degeneration are strategies used to remove exuberant neurites and connections in the immature nervous system to ensure the proper formation of functional circuitry. To observe morphological changes and physical mechanisms underlying this process, early differentiating embryonic stem cell-derived neurons were used combining video imaging of live growth cones (GCs) with confocal laser scanning microscopy and atomic force microscopy, both on fixed and living neurons.
View Article and Find Full Text PDFAtomic force microscopy (AFM) provides the possibility to map the 3D structure of viewed objects with a nanometric resolution, which cannot be achieved with other imaging methods such as conventional video imaging and confocal fluorescent microscopy. Video imaging with CCD cameras can provide an analysis of biological events with a temporal and spatial resolution not possible with AFM, while confocal imaging allows the simultaneous acquisition of immunofluorescence images. In this communication we present a simple method to combine AFM and confocal images to study differentiating embryonic stem (ES) cells-derived and dorsal root ganglia (DRG) neurons in culture.
View Article and Find Full Text PDF