Biobanks are driving motors of precision and personalized medicine by providing high-quality biological material/data through the standardization and harmonization of their collection, preservation, and distribution. UPO Biobank was established in 2020 as an institutional, disease, and population biobank within the University of Piemonte Orientale (UPO) for the promotion and support of high-quality, multidisciplinary studies. UPO Biobank collaborates with UPO researchers, sustaining academic translational research, and supports the Novara Cohort Study, a longitudinal cohort study involving the population in the Novara area that will collect data and biological specimens that will be available for epidemiological, public health, and biological studies on aging.
View Article and Find Full Text PDFExtracellular vesicles (EVs) isolated from plasma are increasingly recognized as promising circulating biomarkers for disease discovery and progression, as well as for therapeutic drug delivery. The scientific community underlined the necessity of standard operative procedures for the isolation and storage of the EVs to ensure robust results. The understanding of the impact of the pre-analytical variables is still limited and some considerations about plasma anticoagulants and isolation methods are necessary.
View Article and Find Full Text PDFInt J Environ Res Public Health
October 2022
Biobanks have established a critical role in biomedical research by collecting, preserving, organizing, and disseminating biospecimens and related health data, contributing to precision medicine development. Participation in biobanks is influenced by several factors, such as trust in institutions and scientists, knowledge about biobanking, and the consideration of benefit sharing. Understanding public attitudes, fears, and concerns toward biobanking is fundamental to designing targeted interventions to increase trust towards biobanks.
View Article and Find Full Text PDFApproximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease, highlighting the need for novel therapeutic strategies. Drug repurposing is attracting increasing attention because, compared to traditional de novo drug discovery processes, it may reduce drug development periods and costs. Epidemiological and preclinical evidence support the antitumor activity of antipsychotic drugs.
View Article and Find Full Text PDFLongitudinal mapping of antibody-based SARS-CoV-2 immunity is critical for public health control of the pandemic and vaccine development. We performed a longitudinal analysis of the antibody-based immune response in a cohort of 100 COVID-19 individuals who were infected during the first wave of infection in northern Italy. The SARS-CoV-2 humoral response was tested using the COVID-SeroIndex, Kantaro Quantitative SARS-CoV-2 IgG Antibody RUO Kit (R&D Systems, Bio-Techne, Minneapolis, USA) and pseudotype-based neutralizing antibody assay.
View Article and Find Full Text PDFDrug repositioning is a promising strategy for discovering new therapeutic strategies for cancer therapy. We investigated psychotropic drugs for their antitumor activity because of several epidemiological studies reporting lower cancer incidence in individuals receiving long term drug treatment. We investigated 27 psychotropic drugs for their cytotoxic activity in colorectal carcinoma, glioblastoma and breast cancer cell lines.
View Article and Find Full Text PDFDiacylglycerol kinases (DGKs) terminate diacylglycerol (DAG) signaling and promote phosphatidic acid (PA) production. Isoform specific regulation of DGKs activity and localization allows DGKs to shape the DAG and PA gradients. The capacity of DGKs to constrain the areas of DAG signaling is exemplified by their role in defining the contact interface between T cells and antigen presenting cells: the immune synapse.
View Article and Find Full Text PDFDiacylglycerol kinase α (DGKα), by phosphorylating diacylglycerol into phosphatidic acid, provides a key signal driving cell migration and matrix invasion. We previously demonstrated that in epithelial cells activation of DGKα activity promotes cytoskeletal remodeling and matrix invasion by recruiting atypical PKC at ruffling sites and by promoting RCP-mediated recycling of α5β1 integrin to the tip of pseudopods. In here we investigate the signaling pathway by which DGKα mediates SDF-1α-induced matrix invasion of MDA-MB-231 invasive breast carcinoma cells.
View Article and Find Full Text PDFDiacylglycerol kinases (DGKs) metabolize diacylglycerol to phosphatidic acid. In T lymphocytes, DGKα acts as a negative regulator of TCR signaling by decreasing diacylglycerol levels and inducing anergy. In this study, we show that upon costimulation of the TCR with CD28 or signaling lymphocyte activation molecule (SLAM), DGKα, but not DGKζ, exits from the nucleus and undergoes rapid negative regulation of its enzymatic activity.
View Article and Find Full Text PDFDiacylglycerol kinases (DGKs) convert diacylglycerol (DAG) into phosphatidic acid (PA), acting as molecular switches between DAG- and PA-mediated signaling. We previously showed that Src-dependent activation and plasma membrane recruitment of DGKalpha are required for growth-factor-induced cell migration and ruffling, through the control of Rac small-GTPase activation and plasma membrane localization. Herein we unveil a signaling pathway through which DGKalpha coordinates the localization of Rac.
View Article and Find Full Text PDF