Publications by authors named "Valentina Benedetti"

Background: The efficacy of early treatment with convalescent plasma in patients with COVID-19 is debated. Nothing is known about the potential effect of other plasma components other than anti-SARS-CoV-2 antibodies.

Methods: To determine whether convalescent or standard plasma would improve outcomes for adults in early phase of Covid19 respiratory impairment we designed this randomized, three-arms, clinical trial (PLACO COVID) blinded on interventional arms that was conducted from June 2020 to August 2021.

View Article and Find Full Text PDF

Background: Acquired brain injury (ABI), especially to the right hemisphere, can result in difficulty using or understanding prosodic contours in speech. Prosody is used to convey emotional connotation or linguistic intent and includes pitch, loudness, rate, and voice quality. A disorder in the comprehension or production of prosody is known as aprosodia; despite the communication disability caused by prosodic disorders, the assessment and treatment of aprosodia following ABI has received scant attention.

View Article and Find Full Text PDF

Thyroid hormone (TH) signaling is a universal regulator of metabolism, growth, and development. Here, we show that TH-TH receptor (TH-TR) axis alterations are critically involved in diabetic nephropathy-associated (DN-associated) podocyte pathology, and we identify TRα1 as a key regulator of the pathogenesis of DN. In ZSF1 diabetic rats, T3 levels progressively decreased during DN, and this was inversely correlated with metabolic and renal disease worsening.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent, potentially lethal monogenic human disorder. There is currently no cure for ADPKD. The mechanistic complexity of the disease, the absence of animal models that can faithfully mimic the disease, as well as the lack of functional human in vitro assays for compound testing, have made drug discovery for PKD very difficult.

View Article and Find Full Text PDF

Generating new kidneys using tissue engineering technologies is an innovative strategy for overcoming the shortage of donor organs for transplantation. Here we report how to efficiently engineer the kidney vasculature of decellularized rat kidney scaffolds by using human induced pluripotent stem cell (hiPSCs)-derived endothelial cells (hiPSC-ECs). In vitro, hiPSC-ECs responded to flow stress by acquiring an alignment orientation, and attached to and proliferated on the acellular kidney sections, maintaining their phenotype.

View Article and Find Full Text PDF

The lack of engineering systems able to faithfully reproduce complex kidney structures in vitro has made it difficult to efficiently model kidney diseases and development. Using polydimethylsiloxane (PDMS) scaffolds and a kidney-derived cell line we developed a system to rapidly engineer custom-made 3D tubules with typical renal epithelial properties. This system was successfully employed to engineer patient-specific tubules, to model polycystic kidney disease (PKD) and test drug efficacy, and to identify a potential new pharmacological treatment.

View Article and Find Full Text PDF

Novel methods in developmental biology and stem cell research have made it possible to generate complex kidney tissues in vitro that resemble whole organs and are termed organoids. In this chapter we describe a technique using suspensions of fully dissociated mouse kidney cells to yield organoids that can become vascularized in vivo and mature and display physiological functions. This system can be used to produce fine-grained human-mouse chimeric organoids in which the renal differentiation potential of human cells can be assessed.

View Article and Find Full Text PDF

Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here, we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol, which induced their differentiation into intermediate mesoderm, then into nephron progenitors and, finally, into mature podocytes.

View Article and Find Full Text PDF

Generating kidney organoids using human stem cells could offer promising prospects for research and therapeutic purposes. However, no cell-based strategy has generated nephrons displaying an intact three-dimensional epithelial filtering barrier. Here, we generated organoids using murine embryonic kidney cells, and documented that these tissues recapitulated the complex three-dimensional filtering structure of glomerular slits in vivo and accomplished selective glomerular filtration and tubular reabsorption.

View Article and Find Full Text PDF

New intervention tools for severely damaged kidneys are in great demand to provide patients with a valid alternative to whole organ replacement. For repairing or replacing injured tissues, emerging approaches focus on using stem and progenitor cells. Embryonic kidneys represent an interesting option because, when transplanted to sites such as the renal capsule of healthy animals, they originate new renal structures.

View Article and Find Full Text PDF

The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes-formation of "domes" and tubule-like structures-and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1.

View Article and Find Full Text PDF

Thermotolerant Campylobacter spp. are frequently the cause of human gastroenteritis and have assumed more importance in Italy following the increased consumption of raw milk. Our objectives were to determine the prevalence and genotypes of Campylobacter spp.

View Article and Find Full Text PDF

The shortage of transplantable organs provides an impetus to develop tissue-engineered alternatives. Producing tissues similar to immature kidneys from simple suspensions of fully dissociated embryonic renal cells is possible in vitro, but glomeruli do not form in the avascular environment. Here, we constructed renal organoids from single-cell suspensions derived from E11.

View Article and Find Full Text PDF

The ability of histone deacetylase inhibitors to modulate the expression of genes relevant for growth or apoptotis regulation supports their interest in combination treatments of resistant tumors. We explored the effect of the combination of the histone deacetylase inhibitor ST2782 and the proteasome inhibitor bortezomib in ovarian carcinoma cell lines, including the IGROV-1 cell line and two p53 mutant platinum-resistant sublines (IGROV-1/OHP and IGROV-1/Pt1). We found a synergistic interaction between the two drugs, more evident in the p53-mutant resistant sublines, which was associated with increa sed apoptosis.

View Article and Find Full Text PDF

Human amniotic fluid stem (hAFS) cells, a novel class of broadly multipotent stem cells that share characteristics of both embryonic and adult stem cells, have been regarded as promising candidate for cell therapy. Taking advantage by the well-established murine model of acute kidney injury (AKI), we studied the proregenerative effect of hAFS cells in immunodeficient mice injected with the nephrotoxic drug cisplatin. Infusion of hAFS cells in cisplatin mice improved renal function and limited tubular damage, although not to control level, and prolonged animal survival.

View Article and Find Full Text PDF

Background: Despite new therapeutic approaches have improved the prognosis of newborns with retinopathy of prematurity (ROP), an unfavourable structural and functional outcome still remains high. There is high pressure to develop new drugs to prevent and treat ROP. There is increasing enthusiasm for anti-VEGF drugs, but angiogenic inhibitors selective for abnormal blood vessels would be considered as an optimal treatment.

View Article and Find Full Text PDF

DNA damage response and checkpoint activation are expected to influence the sensitivity to DNA-damaging agents. This study was designed to investigate the DNA damage response to the novel camptothecin, ST1968, in two tumor cell lines with a different biological background (A2780 and KB), which underwent distinct cell cycle perturbations and cell death modalities. Following treatment with the camptothecin or ionizing radiation, both inducing double-strand DNA breaks, the ovarian carcinoma A2780 cells exhibited activation of the ATM-Chk2 pathway and early induction of apoptosis.

View Article and Find Full Text PDF

Pt compounds still represent the mainstay of the treatment of ovarian carcinoma. The aim of the present study was to investigate the molecular bases of resistance to Pt drugs using an oxaliplatin-resistant ovarian carcinoma cell model IGROV-1/OHP. These cells exhibited high levels of resistance to oxaliplatin, cross-resistance to cisplatin and topotecan and displayed a marked accumulation defect of Pt drugs.

View Article and Find Full Text PDF

The synthetic atypical retinoids containing an adamantyl group exhibit antiproliferative or proapoptotic activities. Apoptosis induction is a dose-dependent effect independent of retinoid receptors. We have reported that induction of apoptosis by the atypical retinoid, ST1926, is associated with early manifestations of genotoxic stress.

View Article and Find Full Text PDF

Epigenetic inactivation of gene expression is a general phenomenon associated with malignant transformation. Recently, we have found that a novel series of histone deacetylases (HDAC) inhibitors exhibit a broad-spectrum inhibition profile characterized by a marked effect on acetylation of histone and non-histone proteins. RC307, a representative compound of this series, caused a growth-inhibitory effect in colon carcinoma cells HCT116 associated with G2 accumulation and induction of apoptosis.

View Article and Find Full Text PDF

ST1968, a novel hydrophilic camptothecin analogue of the 7-oxyiminomethyl series, is characterised by the formation of stable DNA-topoisomerase I cleavable complex and by a promising profile of antitumour activity. The present study was designed to extend preclinical evaluation of the novel camptothecin in human squamous cell carcinoma (SCC) models. ST1968 exhibited an impressive activity with a high cure rate in SCC models.

View Article and Find Full Text PDF

Because cytotoxic stress elicits various signaling pathways that may be implicated in cell survival or cell death, their alterations may have relevance in the development of platinum-resistant phenotype. Thus, in the present study, we investigated cell response to the epidermal growth factor receptor (EGFR) inhibitor gefitinib of ovarian carcinoma cell lines, including cells selected for resistance to cisplatin (IGROV-1/Pt1) and oxaliplatin (IGROV-1/OHP). Resistant sublines exhibited a marked decrease in sensitivity to gefitinib and resistance to apoptosis.

View Article and Find Full Text PDF

Introduction: Proximalisation of colon carcinoma has been reported over the course of the last 60 years. Changes in site distribution are receiving increasing attention on account of their implications for screening programmes.

Objective: A retrospective observational study to determine whether the site distribution of colorectal carcinoma in Italy has varied in the last years and whether changes have been influenced by age and sex.

View Article and Find Full Text PDF