Publications by authors named "Valentina Ambrogi"

In the current study the ability of four previously characterized bifidobacterial β-galactosidases (designated here as BgaA, BgaC, BgaD, and BgaE) to produce galacto-oligosaccharides (GOS) was optimized. Of these enzymes, BgaA and BgaE were found to be promising candidates for GOS production (and the corresponding GOS mixtures were called GOS-A and GOS-E, respectively) with a GOS concentration of 19.0 and 40.

View Article and Find Full Text PDF

Galacto-oligosaccharides (GOS) are non-digestible oligosaccharides characterized by a mix of structures that vary in their degree of polymerization (DP) and glycosidic linkage between the galactose moieties or between galactose and glucose. They have enjoyed extensive scientific scrutiny, and their health-promoting effects are supported by a large number of scientific and clinical studies. A variety of GOS-associated health-promoting effects have been reported, such as growth promotion of beneficial bacteria, in particular bifidobacteria and lactobacilli, inhibition of pathogen adhesion and improvement of gut barrier function.

View Article and Find Full Text PDF

Galacto-oligosaccharides (GOS) represent non-digestible glycans that are commercially produced by transgalactosylation of lactose, and that are widely used as functional food ingredients in prebiotic formulations, in particular in infant nutrition. GOS consumption has been reported to enhance growth of specific bacteria in the gut, in particular bifidobacteria, thereby supporting a balanced gut microbiota. In a previous study, we assessed the hydrolytic activity and substrate specificity of seventeen predicted β-galactosidases encoded by various species and strains of infant-associated bifidobacteria.

View Article and Find Full Text PDF

Bifidobacteria are among the first and most abundant bacterial colonizers of the gastrointestinal tract of (breast-fed) healthy infants. Their success of colonising the infant gut is believed to be, at least partly, due to their ability to metabolize available carbon sources by means of secreted or intracellular glycosyl hydrolases (GHs). Among these, β-galactosidases are particularly relevant as they allow bifidobacteria to grow on β-galactosyl-linked saccharidic substrates, which are present in copious amounts in the milk-based diet of their infant host (e.

View Article and Find Full Text PDF