Phylogenetic relationships within Oxytropis DC. sect. Gloeocephala Bunge from Northeast Asia were studied using plastid intergenic spacers (psbA-trnH + trnL-trnF + trnS-trnG) and ITS nrDNA.
View Article and Find Full Text PDFThe circumarctic ranges of arctic-alpine plants are thought to have been established in the late Pliocene/early Pleistocene, when the modern arctic tundra was formed in response to climate cooling. Previous findings of range-wide genetic structure in arctic-alpine plants have been thought to support this hypothesis, but few studies have explicitly addressed the temporal framework of the genetic structure. Here, we estimated the demographic history of the genetic structure in the circumarctic Kalmia procumbens using sequences of multiple nuclear loci and examined whether its genetic structure reflects prolonged isolation throughout the Pleistocene.
View Article and Find Full Text PDFArctic-alpine plants have expanded and contracted their ranges in response to the Pleistocene climate oscillations. Today, many arctic-alpine plants have vast distributions in the circumarctic region as well as marginal, isolated occurrences in high mountains at lower latitudes. These marginal populations may represent relict, long-standing populations that have persisted for several cycles of cold and warm climate during the Pleistocene, or recent occurrences that either result from southward step-wise migration during the last glacial period or from recent long-distance dispersal.
View Article and Find Full Text PDFFollowing climate cooling at the end of the Tertiary, arctic-alpine plants attained most of their extant species diversity. Because East Asia was not heavily glaciated, the importance of this region as a location for the long-term persistence of these species and their subsequent endemism during the Pleistocene was proposed in early discussions of phytogeography. However, this hypothesis remains to be fully tested.
View Article and Find Full Text PDFPolyploidization, or genome duplication, has played a critical role in the diversification of animals, fungi and plants. Little is known about the population structure and multiple origins of polyploid species because of the difficulty in identifying multiple homeologous nuclear genes. The allotetraploid species Arabidopsis kamchatica is closely related to the model species Arabidopsis thaliana and is distributed in a broader climatic niche than its parental species.
View Article and Find Full Text PDF