We have successfully achieved selective and efficient functionalization of sheet edges in microcrystalline multilayer γ-graphyne through two methods: cross-coupling with residual bromide edge groups and copper-catalyzed azide-alkyne cycloaddition (CuAAC) with edge terminal alkyne groups. This modification significantly enhances the ease of mechanical exfoliation and dispersibility of the sheets of γ-graphyne. Specifically, C-grafted γ-graphyne forms stable dispersions in compatible organic solvents, allowing for the imaging of atomically thin layers of γ-graphyne for the first time.
View Article and Find Full Text PDFγ-Graphyne is the most symmetric sp/sp allotrope of carbon, which can be viewed as graphene uniformly expanded through the insertion of two-carbon acetylenic units between all the aromatic rings. To date, synthesis of bulk γ-graphyne has remained a challenge. We here report the synthesis of multilayer γ-graphyne through crystallization-assisted irreversible cross-coupling polymerization.
View Article and Find Full Text PDFA strategy for arraying small gold nanoparticles on a mesoporous support modified with single-component or mixed self-assembled monolayers is described. The use of mixed surface modifiers allows easy access to a range of surface chemistries and modalities of interaction between nanoparticles and supports. A combination of thiol groups and linear semifluorinated chains effectively stabilized the nanoparticles against aggregation, while preserving their catalytic activity.
View Article and Find Full Text PDFA unique organocatalytic system for Mukaiyama-type aldol reactions based on the cooperative action of nitro compounds and thioureas has been identified. This system is compatible with a wide range of substrates and does not require low temperatures, inert atmospheres, or an aqueous workup. A catalytic mechanism based on nitro group-mediated silyl cation transfer has been proposed.
View Article and Find Full Text PDFAn approach for supporting a Pd-NHC complex on a soluble star polymer with nanoscale dimensions is described. The resulting star polymer catalyst exhibits excellent activity in cross-coupling reactions, is stable in air and moisture, and is easily recoverable and recyclable. These properties are distinct and unattainable with the small-molecule version of the same catalyst.
View Article and Find Full Text PDFWe describe a system in which the self-replication of micellar aggregates results in a spontaneous amplification of chirality in the reaction products. In this system, amphiphiles are synthesized from two "clickable" fragments: a water-soluble "head" and a hydrophobic "tail". Under biphasic conditions, the reaction is autocatalytic, as aggregates facilitate the transfer of hydrophobic molecules to the aqueous phase.
View Article and Find Full Text PDFA rapid approach to identifying complementary catalytic groups using combinations of functional polymers is presented. Amphiphilic polymers with "clickable" hydrophobic blocks were used to create a library of functional polymers, each bearing a single functionality. The polymers were combined in water, yielding mixed micelles.
View Article and Find Full Text PDFUsing the copper-catalyzed azide-alkyne cycloaddition "click" reaction, a library of triazole amphiphiles with a variety of functional polar "heads" and hydrophobic or superhydrophobic "tails" was synthesized. The amphiphiles were evaluated for their ability to stabilize small Au nanoparticles, and, at the same time, serve as templates for nanocasting porous SiO2. One of the Au@SiO2 materials thus prepared was found to be a highly active catalyst for the Au nanoparticle-catalyzed regioselective hydroamination of alkynes.
View Article and Find Full Text PDF1,5-Diarylsubstituted 1,2,3-triazoles are formed in high yield from aryl azides and terminal alkynes in DMSO in the presence of catalytic tetraalkylammonium hydroxide. The reaction is experimentally simple, does not require a transition-metal catalyst, and is not sensitive to atmospheric oxygen and moisture.
View Article and Find Full Text PDFThe experimental rate law for the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction was found to vary in complex ways with concentration, the presence of chloride ion, and the presence of accelerating ligands. Several examples of discontinuous ("threshold behavior") kinetics were observed, along with a decidedly nonlinear correlation of electronic substituent parameter with the rate of CuAAC reaction with p-substituted arylazides. The previously observed tendency of the CuAAC reaction to provide ditriazoles from a conformationally constrained 1,3-diazide was found to be affected by a class of polybenzimidazole ligands introduced in the accompanying article.
View Article and Find Full Text PDFTris(2-benzimidazolylmethyl)amines have been found to be superior accelerating ligands for the copper(I)-catalyzed azide-alkyne cycloaddition reaction. Candidates bearing different benzimidazole N-substituents as well as benzothiazole and pyridyl ligand arms were evaluated by absolute rate measurements under relatively dilute conditions by aliquot quenching kinetics and by relative rate measurements under concentrated conditions by reaction calorimetry. Benzimidazole-based ligands with pendant alkylcarboxylate arms proved to be advantageous in the latter case.
View Article and Find Full Text PDF