We analyze the possibility to prepare a Heisenberg antiferromagnet with cold fermions in optical lattices, starting from a band insulator and adiabatically changing the lattice potential. The numerical simulation of the dynamics in 1D allows us to identify the conditions for success, and to study the influence that the presence of holes in the initial state may have on the protocol. We also extend our results to two-dimensional systems.
View Article and Find Full Text PDFStrongly correlated quantum systems are among the most intriguing and fundamental systems in physics. One such example is the Tonks-Girardeau gas, proposed about 40 years ago, but until now lacking experimental realization; in such a gas, the repulsive interactions between bosonic particles confined to one dimension dominate the physics of the system. In order to minimize their mutual repulsion, the bosons are prevented from occupying the same position in space.
View Article and Find Full Text PDF