Publications by authors named "Valentin Lecheval"

Central place foragers, such as many ants, exploit the environment around their nest. The extent of their foraging range is a function of individual movement, but how the movement patterns of large numbers of foragers result in an emergent colony foraging range remains unclear. Here, we introduce a random walk model with stochastic resetting to depict the movements of searching ants.

View Article and Find Full Text PDF

Decision-making and movement of single animals or group of animals are often treated and investigated as separate processes. However, many decisions are taken while moving in a given space. In other words, both processes are optimized at the same time, and optimal decision-making processes are only understood in the light of movement constraints.

View Article and Find Full Text PDF

Biological systems are typically dependent on transportation networks for the efficient distribution of resources and information. Revealing the decentralized mechanisms underlying the generative process of these networks is key in our global understanding of their functions and is of interest to design, manage and improve human transport systems. Ants are a particularly interesting taxon to address these issues because some species build multi-sink multi-source transport networks analogous to human ones.

View Article and Find Full Text PDF

Moving animal groups such as schools of fishes or flocks of birds often undergo sudden collective changes of their travelling direction as a consequence of stochastic fluctuations in heading of the individuals. However, the mechanisms by which these behavioural fluctuations arise at the individual level and propagate within a group are still unclear. In this study, we combine an experimental and theoretical approach to investigate spontaneous collective U-turns in groups of rummy-nose tetra () swimming in a ring-shaped tank.

View Article and Find Full Text PDF

The development of tracking methods for automatically quantifying individual behavior and social interactions in animal groups has open up new perspectives for building quantitative and predictive models of collective behavior. In this work, we combine extensive data analyses with a modeling approach to measure, disentangle, and reconstruct the actual functional form of interactions involved in the coordination of swimming in Rummy-nose tetra (Hemigrammus rhodostomus). This species of fish performs burst-and-coast swimming behavior that consists of sudden heading changes combined with brief accelerations followed by quasi-passive, straight decelerations.

View Article and Find Full Text PDF

Schools of fish and flocks of birds can move together in synchrony and decide on new directions of movement in a seamless way. This is possible because group members constantly share directional information with their neighbors. Although detecting the directionality of other group members is known to be important to maintain cohesion, it is not clear how many neighbors each individual can simultaneously track and pay attention to, and what the spatial distribution of these influential neighbors is.

View Article and Find Full Text PDF

The goal of this study is to describe accurately how the directional information given by support inclinations affects the ant Lasius niger motion in terms of a behavioral decision. To this end, we have tracked the spontaneous motion of 345 ants walking on a 0.5×0.

View Article and Find Full Text PDF