Publications by authors named "Valentin Kapitany"

In the field of detection and ranging, multiple complementary sensing modalities may be used to enrich information obtained from a dynamic scene. One application of this sensor fusion is in public security and surveillance, where efficacy and privacy protection measures must be continually evaluated. We present a novel deployment of sensor fusion for the discrete detection of concealed metal objects on persons whilst preserving their privacy.

View Article and Find Full Text PDF

Fluorescence lifetime imaging microscopy (FLIM) provides detailed information about molecular interactions and biological processes. A major bottleneck for FLIM is image resolution at high acquisition speeds due to the engineering and signal-processing limitations of time-resolved imaging technology. Here, we present single-sample image-fusion upsampling, a data-fusion approach to computational FLIM super-resolution that combines measurements from a low-resolution time-resolved detector (that measures photon arrival time) and a high-resolution camera (that measures intensity only).

View Article and Find Full Text PDF

Fluorescence lifetime imaging is an important tool in bioimaging that allows one to detect subtle changes in cell dynamics and their environment. Most time-domain approaches currently involve scanning a single illumination point across the sample, which can make imaging dynamic scenes challenging, while single-shot "rapid lifetime determination" can suffer from large uncertainties when the lifetime is not appropriately sampled. Here, we propose a time-folded fluorescence lifetime imaging microscopy (TFFLIM) approach, whereby a time-folding cavity provides multiple spatially sheared replicas of the lifetime, each shifted temporally with respect to a fixed time gate.

View Article and Find Full Text PDF

We are a network of Early Career Researchers (ECRs) and a Project Manager who are working on UKRI's "Physics of Life" grants which aim to merge ideas and techniques predominantly used in physics and apply them to biological questions. We have been collaborating since early 2021 to share research, experiences, and provide peer to peer support. Interdisciplinary projects are known for presenting challenges, bringing together disparate subjects and people with not only different knowledge bases, methods, and equipment but also varying ways of working and common languages.

View Article and Find Full Text PDF

Echo location is a broad approach to imaging and sensing that includes both manmade RADAR, LIDAR, SONAR, and also animal navigation. However, full 3D information based on echo location requires some form of scanning of the scene in order to provide the spatial location of the echo origin-points. Without this spatial information, imaging objects in three-dimensional (3D) is a very challenging task as the inverse retrieval problem is strongly ill-posed.

View Article and Find Full Text PDF

Fluorescence lifetime imaging microscopy (FLIM) is a key technology that provides direct insight into cell metabolism, cell dynamics and protein activity. However, determining the lifetimes of different fluorescent proteins requires the detection of a relatively large number of photons, hence slowing down total acquisition times. Moreover, there are many cases, for example in studies of cell collectives, where wide-field imaging is desired.

View Article and Find Full Text PDF