The performance of plant hybrids relative to line breeding types is generally associated with higher yields, better adaptation, and improved yield stability. In bread wheat (Triticum aestivum L.), however, a broad commercial success for hybrids has not been accomplished until now largely due to the low efficiency of hybrid grain production, which is highly attributable to its self-pollinating nature.
View Article and Find Full Text PDFBackground: Genebanks worldwide are transforming into biodigital resource centers, providing access not only to the plant material itself but also to its phenotypic and genotypic information. Adding information for relevant traits will help boost plant genetic resources' usage in breeding and research. Resistance traits are vital for adapting our agricultural systems to future challenges.
View Article and Find Full Text PDFGenetic pathogen control is an economical and sustainable alternative to the use of chemicals. In order to breed resistant varieties, information about potentially unused genetic resistance mechanisms is of high value. We phenotyped 8,316 genotypes of the winter wheat collection of the , for resistance to powdery mildew (PM), , one of the most important biotrophic pathogens in wheat.
View Article and Find Full Text PDF