Publications by authors named "Valentin Gregori"

This paper describes two methods for impulse noise reduction in colour images that outperform the vector median filter from the noise reduction capability point of view. Both methods work by determining first the vector median in a given filtering window. Then, the use of complimentary information from componentwise analysis allows to build robust outputs from more reliable components.

View Article and Find Full Text PDF

This paper describes a new filter for impulse noise reduction in colour images which is aimed at improving the noise reduction capability of the classical vector median filter. The filter is inspired by the application of a vector marginal median filtering process over a selected group of pixels in each filtering window. This selection, which is based on the vector median, along with the application of the marginal median operation constitutes an adaptive process that leads to a more robust filter design.

View Article and Find Full Text PDF

The peer group of an image pixel is a pixel similarity-based concept which has been successfully used to devise image denoising methods. However, since it is difficult to define the pixel similarity in a crisp way, we propose to represent this similarity in fuzzy terms. In this paper, we introduce the fuzzy peer group concept, which extends the peer group concept in the fuzzy setting.

View Article and Find Full Text PDF

A new impulse noise reduction method for color images is presented. Color images that are corrupted with impulse noise are generally filtered by applying a grayscale algorithm on each color component separately or using a vector-based approach where each pixel is considered as a single vector. The first approach causes artefacts especially on edge and texture pixels.

View Article and Find Full Text PDF