Natural materials exhibit exceptional properties due to their hierarchical structures spanning from the nano- to the macroscale. Replicating these intricate spatial arrangements in synthetic materials presents a significant challenge as it requires precise control of nanometric features within large-scale structures. Addressing this challenge depends on developing methods that integrate assembly techniques across multiple length scales to construct multiscale-structured synthetic materials in practical, bulk forms.
View Article and Find Full Text PDFThe development of renewable vinyl-based photopolymer resins offers a promising solution to reducing the environmental impact associated with 3D printed materials. This study introduces a bifunctional lipoate cross-linker containing a dynamic disulfide bond, which is combined with acrylic monomers (-butyl acrylate) and conventional photoinitiators to develop photopolymer resins that are compatible with commercial stereolithography 3D printing. The incorporation of disulfide bonds within the polymer network's backbone imparts the 3D printed objects with self-healing capabilities and complete degradability.
View Article and Find Full Text PDFCancer stem cells (CSCs) make up a small population of cancer cells, primarily responsible for tumor initiation, metastasis, and drug resistance. They overexpress Arg-Gly-Asp (RGD) binding integrin receptors that play crucial roles in cell proliferation and stemness through interaction with the extracellular matrix. Here, we showed that monodisperse polymeric tadpole nanoparticles covalently coupled with different RGD densities regulated colon CSC proliferation and stemness in a RGD density-dependent manner.
View Article and Find Full Text PDFTo date, the restricted capability to fabricate ceramics with independently tailored nano- and macroscopic features has hindered their implementation in a wide range of crucial technological areas, including aeronautics, defense, and microelectronics. In this study, a novel approach that combines self- and digital assembly to create polymer-derived ceramics with highly controlled structures spanning from the nano- to macroscale is introduced. Polymerization-induced microphase separation of a resin during digital light processing generates materials with nanoscale morphologies, with the distinct phases consisting of either a preceramic precursor or a sacrificial polymer.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2023
In this study, the fabrication of 3D-printed polymer materials with controlled phase separation using polymerization induced microphase separation (PIMS) via photoinduced 3D printing is demonstrated. While many parameters affecting the nanostructuration in PIMS processes are extensively investigated, the influence of the chain transfer agent (CTA) end group, i.e.
View Article and Find Full Text PDFCancer stem cells (CSCs) are primarily responsible for tumour drug resistance and metastasis; thus, targeting CSCs can be a promising approach to stop cancer recurrence. However, CSCs are small in numbers and readily differentiate into matured cancer cells, making the study of their biological features, including therapeutic targets, difficult. The use of three-dimensional (3D) culture systems to enrich CSCs has some limitations, including low sphere forming efficiency, enzymatic digestion that may damage surface proteins, and more importantly no means to sustain the stem properties.
View Article and Find Full Text PDFThe development of advanced solid-state energy-storage devices is contingent upon finding new ways to produce and manufacture scalable, high-modulus solid-state electrolytes that can simultaneously provide high ionic conductivity and robust mechanical integrity. In this work, an efficient one-step process to manufacture solid polymer electrolytes composed of nanoscale ion-conducting channels embedded in a rigid crosslinked polymer matrix via Digital Light Processing 3D printing is reported. A visible-light-mediated polymerization-induced microphase-separation approach is utilized, which produces materials with two chemically independent nanoscale domains with highly tunable nanoarchitectures.
View Article and Find Full Text PDFContinued SARS-CoV-2 transmission among the human population has meant the evolution of the virus to produce variants of increased infectiousness and virulence, coined variants of concern (VOCs). The last wave of pandemic infections was driven predominantly by the delta VOC, but because of continued transmission and adaptive mutations, the more highly transmissible omicron variant emerged and is now dominant. However, due to waning immunity and emergence of new variants, vaccines alone cannot control the pandemic.
View Article and Find Full Text PDFAlthough 3D printing allows the macroscopic structure of objects to be easily controlled, controlling the nanostructure of 3D printed materials has rarely been reported. Herein, we report an efficient and versatile process for fabricating 3D printed materials with controlled nanoscale structural features. This approach uses resins containing macromolecular chain transfer agents (macroCTAs) which microphase separate during the photoinduced 3D printing process to form nanostructured materials.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2022
Nanostructured polymeric materials play important roles in many advanced applications, however, controlling the morphologies of polymeric thermosets remains a challenge. This work uses multi-arm macroCTAs to mediate polymerization-induced microphase separation (PIMS) and prepare nanostructured materials via photoinduced 3D printing. The characteristic length scale of microphase-separated domains is determined by the macroCTA arm length, while nanoscale morphologies are controlled by the macroCTA architecture.
View Article and Find Full Text PDFAnisotropic Janus ("snowman") nanoparticles with a single protrusion are currently made via the solvent swelling-induced method. Here, we demonstrate without the aid of toxic solvents a generally applicable method for the formation of anisotropic polymer nanoparticles directly in water by controlling polymer mobility through tuning its glass transition temperature (T ). Spherical structures, formed immediately after the emulsion polymerization, transformed into uniform tadpoles (with head diameter ≈60 nm and tail length ≈130 nm) through the protrusion of a single cylindrical tail when cooled to a temperature above the T of the polymer.
View Article and Find Full Text PDFCurrently, there are no straightforward methods to 3D print materials with nanoscale control over morphological and functional properties. Here, a novel approach for the fabrication of materials with controlled nanoscale morphologies using a rapid and commercially available Digital Light Processing 3D printing technique is demonstrated. This process exploits reversible deactivation radical polymerization to control the in-situ-polymerization-induced microphase separation of 3D printing resins, which provides materials with complex architectures controllable from the macro- to nanoscale, resulting in the preparation of materials with enhanced mechanical properties.
View Article and Find Full Text PDFThe rise in coronavirus variants has resulted in surges of the disease across the globe. The mutations in the spike protein on the surface of the virion membrane not only allow for greater transmission but also raise concerns about vaccine effectiveness. Preventing the spread of SARS-CoV-2, its variants, and other viruses from person to person via airborne or surface transmission requires effective inactivation of the virus.
View Article and Find Full Text PDFTargeted delivery of therapeutic drugs using nanoparticles to the highly aggressive triple negative breast cancer cells has the potential to reduce side effects and drug resistance. Cell entry into triple negative cells can be enhanced by incorporating cell binding receptor molecules on the surface of the nanoparticles to enhance receptor-mediated entry pathways, including clatherin or caveolae endocytosis. However, for highly aggressive cancer cells, these pathways may not be effective, with the more rapid and high volume uptake from macropinocytosis or phagocytosis being significantly more advantageous.
View Article and Find Full Text PDFConventional self-assembly methods of block copolymers in cosolvents (i.e., usually water and organic solvents) has yet to produce a pure and monodisperse population of nanocubes.
View Article and Find Full Text PDFPolymer nanostructures can be designed with tailored properties and functions by varying their shape, chemical compositions, and surface functionality. The poor stability of these soft materials in solvent other than water can be overcome by introducing cross-links. However, cross-linking complex morphologies remains a challenge.
View Article and Find Full Text PDFPolymer nanostructures can be designed with specific properties and functions, such as controlled shape, size, chemical composition, and adaptive ability to change shape or size in response to environmental cues. Precise control to organize polymer chains into uniform nonspherical symmetric and asymmetric nanostructures and at scale remains a synthetic challenge. Here, by using the temperature-directed morphology transformation (TDMT) method we show through a systematic organization of polymer chains the synthesis of well-defined asymmetric (i.
View Article and Find Full Text PDFTargeting the spleen with nanoparticles could increase the efficacy of vaccines and cancer immunotherapy, and have the potential to treat intracellular infections including leishmaniasis, trypanosome, splenic TB, AIDS, malaria, and hematological disorders. Although, nanoparticle capture in both the liver and spleen has been well documented, there are only a few examples of specific capture in the spleen alone. It is proposed that the larger the nanoparticle size (>400 nm) the greater the specificity and capture within the spleen.
View Article and Find Full Text PDFHere, we have developed a new methodology to obtain a pure population of well-defined and new kinetically trapped structures directly in water, inaccessible by other self-assembly techniques. We have exemplified this method through the synthesis of stacked toroidal micelles trapped into a nanorattle with multiple and orthogonal surface chemical functionality. These unique polymer nanorattles result from a water-surrounded inner core (or yolk) of stacked toroidal micelles encapsulated by a shell of stacked toroids.
View Article and Find Full Text PDFDriving amphiphilic block copolymers to self-assemble into asymmetric and equilibrium nanostructures remains a challenge. Here, we use the temperature-directed morphology transformation (TDMT) method to tailor the self-assembly of block copolymers into asymmetric nanoparticles with either a single (i.e.
View Article and Find Full Text PDFJ Am Chem Soc
December 2015
Multicompartment tadpole nano-objects are a rare and intriguing class of structures with potential in a wide range of applications. Here, we demonstrate the synthesis of chemically multifunctional polymer tadpoles made at high weight fractions of polymer (>10 wt %). The tadpoles are synthesized using two different thermoresponsive MacroCTAs with either alkyne or pyridyldisulfide end-groups, allowing chemical functionality in the head, tail, or both.
View Article and Find Full Text PDFProducing synthetic soft worm and rod structures with multiple chemical functionalities on the surface would provide potential utility in drug delivery, nanoreactors, tissue engineering, diagnostics, rheology modifiers, enzyme mimics, and many other applications. Here, we have synthesized multifunctional worms and rods directly in water using a one-step reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization at high weight fractions of polymer (>10 wt %). The chain-end functionalities included alkyne, pyridyl disulfide, dopamine, β-thiolactone, and biotin groups.
View Article and Find Full Text PDF