Publications by authors named "Valentijn M T De Jong"

Observational data provide invaluable real-world information in medicine, but certain methodological considerations are required to derive causal estimates. In this systematic review, we evaluated the methodology and reporting quality of individual-level patient data meta-analyses (IPD-MAs) conducted with non-randomized exposures, published in 2009, 2014, and 2019 that sought to estimate a causal relationship in medicine. We screened over 16,000 titles and abstracts, reviewed 45 full-text articles out of the 167 deemed potentially eligible, and included 29 into the analysis.

View Article and Find Full Text PDF

Missing data is a common problem in medical research, and is commonly addressed using multiple imputation. Although traditional imputation methods allow for valid statistical inference when data are missing at random (MAR), their implementation is problematic when the presence of missingness depends on unobserved variables, that is, the data are missing not at random (MNAR). Unfortunately, this MNAR situation is rather common, in observational studies, registries and other sources of real-world data.

View Article and Find Full Text PDF

External validation of the discriminative ability of prediction models is of key importance. However, the interpretation of such evaluations is challenging, as the ability to discriminate depends on both the sample characteristics (ie, case-mix) and the generalizability of predictor coefficients, but most discrimination indices do not provide any insight into their respective contributions. To disentangle differences in discriminative ability across external validation samples due to a lack of model generalizability from differences in sample characteristics, we propose propensity-weighted measures of discrimination.

View Article and Find Full Text PDF

Purpose: Heterogeneous results from multi-database studies have been observed, for example, in the context of generating background incidence rates (IRs) for adverse events of special interest for SARS-CoV-2 vaccines. In this study, we aimed to explore different between-database sources of heterogeneity influencing the estimated background IR of venous thromboembolism (VTE).

Methods: Through forest plots and random-effects models, we performed a qualitative and quantitative assessment of heterogeneity of VTE background IR derived from 11 databases from 6 European countries, using age and gender stratified background IR for the years 2017-2019 estimated in two studies.

View Article and Find Full Text PDF

A common problem in the analysis of multiple data sources, including individual participant data meta-analysis (IPD-MA), is the misclassification of binary variables. Misclassification may lead to biased estimators of model parameters, even when the misclassification is entirely random. We aimed to develop statistical methods that facilitate unbiased estimation of adjusted and unadjusted exposure-outcome associations and between-study heterogeneity in IPD-MA, where the extent and nature of exposure misclassification may vary across studies.

View Article and Find Full Text PDF

Objective: To externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19.

Design: Two stage individual participant data meta-analysis.

Setting: Secondary and tertiary care.

View Article and Find Full Text PDF

Objectives: Among ID studies seeking to make causal inferences and pooling individual-level longitudinal data from multiple infectious disease cohorts, we sought to assess what methods are being used, how those methods are being reported, and whether these factors have changed over time.

Study Design And Setting: Systematic review of longitudinal observational infectious disease studies pooling individual-level patient data from 2+ studies published in English in 2009, 2014, or 2019. This systematic review protocol is registered with PROSPERO (CRD42020204104).

View Article and Find Full Text PDF

Introduction: Causal methods have been adopted and adapted across health disciplines, particularly for the analysis of single studies. However, the sample sizes necessary to best inform decision-making are often not attainable with single studies, making pooled individual-level data analysis invaluable for public health efforts. Researchers commonly implement causal methods prevailing in their home disciplines, and how these are selected, evaluated, implemented and reported may vary widely.

View Article and Find Full Text PDF

Ideally, a meta-analysis will summarize data from several unbiased studies. Here we look into the less than ideal situation in which contributing studies may be compromised by non-differential measurement error in the exposure variable. Specifically, we consider a meta-analysis for the association between a continuous outcome variable and one or more continuous exposure variables, where the associations may be quantified as regression coefficients of a linear regression model.

View Article and Find Full Text PDF

Prediction models often yield inaccurate predictions for new individuals. Large data sets from pooled studies or electronic healthcare records may alleviate this with an increased sample size and variability in sample characteristics. However, existing strategies for prediction model development generally do not account for heterogeneity in predictor-outcome associations between different settings and populations.

View Article and Find Full Text PDF

Introduction: Pooling (or combining) and analysing observational, longitudinal data at the individual level facilitates inference through increased sample sizes, allowing for joint estimation of study- and individual-level exposure variables, and better enabling the assessment of rare exposures and diseases. Empirical studies leveraging such methods when randomization is unethical or impractical have grown in the health sciences in recent years. The adoption of so-called "causal" methods to account for both/either measured and/or unmeasured confounders is an important addition to the methodological toolkit for understanding the distribution, progression, and consequences of infectious diseases (IDs) and interventions on IDs.

View Article and Find Full Text PDF

Pathologic nipple discharge (PND) is one of the most common breast-related complaints for referral because of its supposed association with breast cancer. The aim of this network meta-analysis (NMA) was to compare the diagnostic efficacy of ultrasound, mammogram, cytology, magnetic resonance imaging (MRI), and ductoscopy in patients with PND, as well as to determine the best diagnostic strategy to assess the risk of malignancy as cause for PND. Cochrane Library, PubMed, and Embase were searched to collect relevant literature from the inception of each of the diagnostic methods until January 27, 2020.

View Article and Find Full Text PDF

Objective: To review and appraise the validity and usefulness of published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at increased risk of covid-19 infection or being admitted to hospital with the disease.

Design: Living systematic review and critical appraisal by the COVID-PRECISE (Precise Risk Estimation to optimise covid-19 Care for Infected or Suspected patients in diverse sEttings) group.

Data Sources: PubMed and Embase through Ovid, up to 1 July 2020, supplemented with arXiv, medRxiv, and bioRxiv up to 5 May 2020.

View Article and Find Full Text PDF

Many randomized trials evaluate an intervention effect on time-to-event outcomes. Individual participant data (IPD) from such trials can be obtained and combined in a so-called IPD meta-analysis (IPD-MA), to summarize the overall intervention effect. We performed a narrative literature review to provide an overview of methods for conducting an IPD-MA of randomized intervention studies with a time-to-event outcome.

View Article and Find Full Text PDF

Over the past few years, evidence synthesis has become essential to investigate and improve the generalizability of medical research findings. This strategy often involves a meta-analysis to formally summarize quantities of interest, such as relative treatment effect estimates. The use of meta-analysis methods is, however, less straightforward in prognosis research because substantial variation exists in research objectives, analysis methods and the level of reported evidence.

View Article and Find Full Text PDF

Multinomial Logistic Regression (MLR) has been advocated for developing clinical prediction models that distinguish between three or more unordered outcomes. We present a full-factorial simulation study to examine the predictive performance of MLR models in relation to the relative size of outcome categories, number of predictors and the number of events per variable. It is shown that MLR estimated by Maximum Likelihood yields overfitted prediction models in small to medium sized data.

View Article and Find Full Text PDF