Spatially resolved gene expression profiling provides insight into tissue organization and cell-cell crosstalk; however, sequencing-based spatial transcriptomics (ST) lacks single-cell resolution. Current ST analysis methods require single-cell RNA sequencing data as a reference for rigorous interpretation of cell states, mostly do not use associated histology images and are not capable of inferring shared neighborhoods across multiple tissues. Here we present Starfysh, a computational toolbox using a deep generative model that incorporates archetypal analysis and any known cell type markers to characterize known or new tissue-specific cell states without a single-cell reference.
View Article and Find Full Text PDFWhile regulatory T (T) cells are traditionally viewed as professional suppressors of antigen presenting cells and effector T cells in both autoimmunity and cancer, recent findings of distinct T cell functions in tissue maintenance suggest that their regulatory purview extends to a wider range of cells and is broader than previously assumed. To elucidate tumoral T cell 'connectivity' to diverse tumor-supporting accessory cell types, we explored immediate early changes in their single-cell transcriptomes upon punctual T cell depletion in experimental lung cancer and injury-induced inflammation. Before any notable T cell activation and inflammation, fibroblasts, endothelial and myeloid cells exhibited pronounced changes in their gene expression in both cancer and injury settings.
View Article and Find Full Text PDFIn response to the coronavirus disease 2019 (COVID-19) pandemic, many cancer centers and clinics deployed remote work options for their employees. Due to the rapid response needed during this crisis, little to no feedback was obtained from dosimetrists. This study aimed to assess the productivity level and job satisfaction of medical dosimetrists in response to changes in working conditions due to the COVID-19 pandemic.
View Article and Find Full Text PDFRegulatory T (Treg) cells represent a specialized lineage of suppressive CD4+ T cells whose functionality is critically dependent on their ability to migrate to and dwell in the proximity of cells they control. Here we show that continuous expression of the chemokine receptor CXCR4 in Treg cells is required for their ability to accumulate in the bone marrow (BM). Induced CXCR4 ablation in Treg cells led to their rapid depletion and consequent increase in mature B cells, foremost the B-1 subset, observed exclusively in the BM without detectable changes in plasma cells or hematopoietic stem cells or any signs of systemic or local immune activation elsewhere.
View Article and Find Full Text PDFImmunotherapy with antigen-specific T cells is a promising, targeted therapeutic option for patients with cancer as well as for immunocompromised patients with virus infections. In this review, we characterize and compare current manufacturing protocols for the generation of T cells specific to viral and non-viral tumor-associated antigens. Specifically, we discuss: (1) the different methodologies to expand virus-specific T cell and non-viral tumor-associated antigen-specific T cell products, (2) an overview of the immunological principles involved when developing such manufacturing protocols, and (3) proposed standardized methodologies for the generation of polyclonal, polyfunctional antigen-specific T cells irrespective of donor source.
View Article and Find Full Text PDFWe present the case of an 18-year-old male patient with a penetrating lesion at zone II of the flexor compartment of the left hand. During surgery, complete reabsorption of the second deep and superficial flexor tendons was evidenced, prompting the decision to perform a two-stage procedure. First, a spacer was placed, and pulley reconstruction was performed.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
August 2021
Purpose: Young patients, including pediatric, adolescent, and young adult (YA) patients, are most likely to benefit from the reduced integral dose of proton beam radiation therapy (PBT) resulting in fewer late toxicities and secondary malignancies. This study sought to examine insurance approval and appeal outcomes for PBT among YA patients compared with pediatric patients at a large-volume proton therapy center.
Methods And Materials: We performed a cross-sectional cohort study of 284 consecutive patients aged 0 to 39 years for whom PBT was recommended in 2018 through 2019.
Objective: Insulin resistance and altered hepatic mitochondrial function are central features of type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD), but the etiological role of these processes in disease progression remains unclear. Here we investigated the molecular links between insulin resistance, mitochondrial remodeling, and hepatic lipid accumulation.
Methods: Hepatic insulin sensitivity, endogenous glucose production, and mitochondrial metabolic fluxes were determined in wild-type, obese (ob/ob) and pioglitazone-treatment obese mice using a combination of radiolabeled tracer and stable isotope NMR approaches.
The aim of the current study was to evaluate the effect of sustained physiologic increase of ∼50 mg/dL in plasma glucose concentration on insulin secretion in normal glucose-tolerant (NGT) subjects. Twelve NGT subjects without family history of type 2 diabetes mellitus (T2DM; FH-) and 8 NGT with family history of T2DM (FH+) received an oral glucose tolerance test and two-step hyperglycemic clamp (100 and 300 mg/dL) followed by intravenous arginine bolus before and after 72-h glucose infusion. Fasting plasma glucose increased from 94 ± 2 to 142 ± 4 mg/dL for 72 h.
View Article and Find Full Text PDFThe purpose of this study was to examine the confidence and proficiency levels of medical dosimetry graduates as they transition from student to professional during their first employment as medical dosimetrists. In addition, this study explored the support provided by employers to assist those medical dosimetry graduates during this transitional period. With assistance from the Medical Dosimetrist Certification Board (MDCB), individuals who graduated from a Joint Review Committee on Education in Radiologic Technology accredited medical dosimetry program between 2011 and 2018 and earned MDCB certification between 2012 and 2018 were invited to complete an original survey detailing their experiences during their first employment as medical dosimetrists.
View Article and Find Full Text PDFA comprehensive characterization of the molecular processes controlling cell fate decisions is essential to derive stable progenitors and terminally differentiated cells that are functional from human pluripotent stem cells (hPSCs). Here, we report the use of quantitative proteomics to describe early proteome adaptations during hPSC differentiation toward pancreatic progenitors. We report that the use of unbiased quantitative proteomics allows the simultaneous profiling of numerous proteins at multiple time points, and is a valuable tool to guide the discovery of signaling events and molecular signatures underlying cellular differentiation.
View Article and Find Full Text PDFObjectives: Insulin receptor (IR)-mediated signaling is involved in the regulation of pluripotent stem cells; however, its direct effects on regulating the maintenance of pluripotency and lineage development are not fully understood. The main objective of this study is to understand the role of IR signaling in pluripotency and lineage development.
Methods: To explore the role of IR signaling, we generated IR knock-out (IRKO) mouse induced pluripotent stem cells (miPSCs) from E14.
Toxocariasis is a zoonotic disease usually caused by dog and cat roundworms, and Detection and diagnosis is difficult in paratenic and accidental hosts, including humans, as they cannot be detected through conventional methods such as fecal examination. Diagnosis therefore relies on immunological methods and molecular methods such as enzyme-linked immunosorbent assay (ELISA) and Western Blot, which are both time-consuming and requires sophisticated equipment. In the Philippines, only a few studies are available on seroprevalence.
View Article and Find Full Text PDFA major goal of diabetes research is to develop strategies that replenish pancreatic insulin-producing beta cells. One emerging strategy is to harness pancreatic plasticity-the ability of pancreatic cells to undergo cellular interconversions-a phenomenon implicated in physiological stress and pancreatic injury. Here, we investigate the effects of inflammatory cytokine stress on the differentiation potential of ductal cells in a human cell line, in mouse ductal cells by pancreatic intraductal injection, and during the progression of autoimmune diabetes in the non-obese diabetic (NOD) mouse model.
View Article and Find Full Text PDFPatients with an HNF1B(S148L/+) mutation (MODY5) typically exhibit pancreatic hypoplasia. However, the molecular mechanisms are unknown due to inaccessibility of patient material and because mouse models do not fully recapitulate MODY5. Here, we differentiated MODY5 human-induced pluripotent stem cells (hiPSCs) into pancreatic progenitors, and show that the HNF1B(S148L/+) mutation causes a compensatory increase in several pancreatic transcription factors, and surprisingly, a decrease in PAX6 pancreatic gene expression.
View Article and Find Full Text PDFThe mechanisms underlying the development of complications in type 1 diabetes (T1D) are poorly understood. Disease modeling of induced pluripotent stem cells (iPSCs) from patients with longstanding T1D (disease duration ≥ 50 years) with severe (Medalist +C) or absent to mild complications (Medalist -C) revealed impaired growth, reprogramming, and differentiation in Medalist +C. Genomics and proteomics analyses suggested differential regulation of DNA damage checkpoint proteins favoring protection from cellular apoptosis in Medalist -C.
View Article and Find Full Text PDFThe Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D.
View Article and Find Full Text PDFControversy has long surrounded research on pancreatic beta cell regeneration. Some groups have used nonphysiological experimental methodologies to build support for the existence of pancreatic progenitor cells within the adult pancreas that constantly replenish the beta cell pool; others argue strongly against this mode of regeneration. Recent research has reinvigorated enthusiasm for the harnessing of pancreatic plasticity for therapeutic application--for example, the transdifferentiation of human pancreatic exocrine cells into insulin-secreting beta-like cells in vitro; the conversion of mouse pancreatic acinar cells to beta-like cells in vivo via cytokine treatment; and the potential redifferentiation of dedifferentiated mouse beta cells in vivo.
View Article and Find Full Text PDFThere is considerable interest in differentiating human pluripotent stem cells (hPSCs) into definitive endoderm (DE) and pancreatic cells for in vitro disease modeling and cell replacement therapy. Numerous protocols use fetal bovine serum, which contains poorly defined factors to induce DE formation. Here, we compared Wnt and BMP in their ability to cooperate with Activin signaling to promote DE formation in a chemically defined medium.
View Article and Find Full Text PDFNew desulfurizing bacteria able to convert dibenzothiophene into 2-hydroxybiphenyl and sulfate were isolated from contaminated soils collected in Mexican refineries. Random amplified polymorphic DNA analysis showed they were different from previously reported Rhodococcus erythropolis desulfurizing strains. According to 16S rRNA gene sequencing and fatty acid analyses, these new isolates belonged to the genus Rhodococcus.
View Article and Find Full Text PDFRecent reports characterizing the physiological properties of normal human labial acini are reviewed with particular emphasis on mechanisms related to fluid secretion. In contrast to the salivary glands of several experimental animals, human labial acinar cells do not appear to have a1-adrenergic receptors, substance P peptidergic receptors, or significant levels of Cl-/HCO3- exchange. Nor do they appear to secrete HCO3- in response to Ca2+ mobilizing stimuli.
View Article and Find Full Text PDF