Next-generation gadolinium-based contrast agents (GBCAs), including both high relaxivity agents and targeted agents, and manganese-based agents with a high probably of commercial success are discussed in some depth. It is highly likely that gadopiclenol and gadoquatrane, both next-generation high relaxivity gadolinium-based compounds, will come in time to replace the current macrocyclic gadolinium chelates, despite the wide acceptance, very high safety profile, and high stability of the latter group. Current research has also made possible the development of 2 new targeted gadolinium chelates, which look very promising, with the potential to improve cancer detection (for both MT218 and ProCA32.
View Article and Find Full Text PDFIn the past decades, we have witnessed tremendous technical innovations in computed tomography (CT) imaging. These included improvements in temporal and spatial resolution, lowering of the radiation dose, the introduction of dual-energy and multi-energy imaging, automated image preprocessing and machine learning algorithms, and, most recently, the development and clinical introduction of photon-counting detector CT. This special issue of Investigative Radiology comprises a collection of expert summaries and reviews on this most impactful recent innovation and cutting-edge technology of photon-counting detector CT.
View Article and Find Full Text PDFInvest Radiol
January 2023
Decades of technical innovations have propelled musculoskeletal radiology through an astonishing evolution. New artificial intelligence and deep learning methods capitalize on many past innovations in magnetic resonance imaging (MRI) to reach unprecedented speed, image quality, and new contrasts. Similarly exciting developments in computed tomography (CT) include clinically applicable molecular specificity and substantially improved spatial resolution of musculoskeletal structures and diseases.
View Article and Find Full Text PDFThis review provides a balanced perspective regarding the clinical utility of magnetic resonance systems across the range of field strengths for which current state-of-the-art units exist (0.55 T, 1.5 T, 3 T, and 7 T).
View Article and Find Full Text PDFNew next-generation low-field magnetic resonance imaging systems (operating in the range of 0.5 T) hold great potential for increasing access to clinical diagnosis and needed health care both in developed countries and worldwide. The relevant history concerning the choice of field strength, which resulted in 1.
View Article and Find Full Text PDFObjectives: This preclinical study was devised to investigate potential cellular toxicity in human neurons induced by gadolinium-based contrast agents (GBCAs) used for contrast-enhanced magnetic resonance imaging (MRI). Neurons modeling a subset of those in the basal ganglia were tested, because the basal ganglia region is 1 of 2 brain regions that displays the greatest T1-dependent signal hyperintensity changes.
Methods: Eight GBCAs were tested.
Recent innovations in magnetic resonance, involving both hardware and software, that effectively deal with motion-whether inadvertent on the part of the patient or due to respiration and cardiac contraction-are reviewed, emphasizing major current advances. New technology involving motion sensing (kinetic, respiratory, and beat) is enabling simpler, faster, and more robust monitoring of the sources of motion. This information is being integrated, with new innovative imaging approaches, to effectively manage motion and its impact on image quality.
View Article and Find Full Text PDFBackground: The availability of data in the medical literature for the T relaxivities of the Gd-based contrast agents (GBCAs) is limited. A comprehensive comparison between the agents available commercially (other than in Europe) is lacking, with no data available that most closely reflect the clinic, which is in human whole blood at body temperature.
Purpose: To complement the existing literature by determining T relaxivity data for eight GBCAs in vitro.
The issue of dechelation (transmetallation) in vivo after administration of the linear gadolinium-based contrast agents, and potential safety concerns, is considered on the basis of an extensive, focused literature review. Early indications of potential problems included the high level of excess ligand used in the formulation of 2 agents (indeed the 2 least stable thermodynamically) and interference with laboratory tests when blood was drawn from patients relatively soon after administration of these same agents. The advent of nephrogenic systemic fibrosis in the late 2000s raised additional major concerns.
View Article and Find Full Text PDFThe question of improved relaxivity, and potential efficacy therein, for a next-generation of magnetic resonance gadolinium chelates with extracellular distribution and renal excretion, which could also be viewed from the perspective of dose, is addressed on the basis of historical development, animal experimentation, and human trials. There was no systematic evaluation that preceded the choice of 0.1 mmol/kg as the standard dose for human imaging with the gadolinium chelates.
View Article and Find Full Text PDFObjectives: To investigate prospectively the repeatability of pancreatic perfusion measurements using arterial spin labelling (ASL) and to determine the increase in perfusion due to secretin stimulation.
Material And Methods: An (FAIR)-TrueFISP ASL sequence was applied to determine the perfusion of the pancreatic head in a 3T MRI scanner. Ten healthy volunteers (four men, six women: mean age 28.
For magnetic resonance, the established class of intravenous contrast media is the gadolinium-based contrast agents. In the 3 decades since initial approval, these have proven in general to be very safe for human administration. However, in 2006, a devastating late adverse reaction to administration of the less stable gadolinium-based contrast agents was identified, nephrogenic systemic fibrosis.
View Article and Find Full Text PDFObjective: The aim of this study was to compare the degree of artifact reduction in magnetic resonance imaging achieved with slice encoding for metal artifact correction (SEMAC) in combination with view angle tilting (VAT) and multiacquisition variable resonance image combination (MAVRIC) for standard contrast weightings and different metallic materials.
Methods: Four identically shaped rods made of the most commonly used prosthetic materials (stainless steel, SS; titanium, Ti; cobalt-chromium-molybdenum, CoCr; and oxidized zirconium, oxZi) were scanned at 3 T. In addition to conventional fast spin-echo sequences, metal artifact reduction sequences (SEMAC-VAT and MAVRIC) with varying degrees of artifact suppression were applied at different contrast weightings (T1w, T2w, PDw).
Objective: The aim of this retrospective study was to evaluate the diagnostic value and measure interreader agreement of the pancreaticolienal gap (PLG) in the assessment of imaging features of pancreatic carcinoma (PC) on contrast-enhanced multi-detector computed tomography (CE-MDCT).
Materials And Methods: CE-MDCT studies in the portal venous phase were retrospectively reviewed for 66 patients with PC. The age- and gender-matched control group comprised 103 healthy individuals.
The relevant clinical accelerated magnetic resonance techniques that are available currently for routine patient examinations are reviewed, presenting and discussing the benefits therein when compared with more conventional scans. The focus is on clinical use and practicality, with the review divided into 3 sections. Improvements in 3-dimensional acquisition are first discussed, specifically controlled aliasing in parallel imaging results in higher acceleration, related radial techniques, and CAIPI-Dixon-TWIST-VIBE.
View Article and Find Full Text PDFThe established class of intravenous contrast media for magnetic resonance imaging is the gadolinium chelates, more generally referred to as the gadolinium-based contrast agents (GBCAs). These can be differentiated on the basis of stability in vivo, with safety and tolerability of the GBCAs dependent upon chemical and biologic inertness. This review discusses first the background in terms of development of these agents and safety discussions therein, and second their relative stability based both on in vitro studies and clinical observations before and including the advent of nephrogenic systemic fibrosis.
View Article and Find Full Text PDFObjective: To compare the clinical value of sacroiliac spectral CT and MRI in diagnosing axial spondyloarthritis (SpA).
Methods: 137 patients with low back pain and suspected axial SpA were recruited. 76 patients were diagnosed with axial SpA, and 49 patients were diagnosed with non-specific low back pain (nLBP).
Objectives: Readout-segmented echo planar imaging (rs-EPI) significantly reduces susceptibility artifacts in diffusion-weighted imaging (DWI) of the breast compared to single-shot EPI but is limited by longer scan times. To compensate for this, we tested a new simultaneous multi-slice (SMS) acquisition for accelerated rs-EPI.
Materials And Methods: After approval by the local ethics committee, eight healthy female volunteers (age, 38.
Purpose: To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA.
Materials And Methods: After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil.
Background/purpose: To evaluate the diagnostic value of spectral computed tomography (CT) of sacroiliac joints for axial spondyloarthritis (SpA).
Methods: We retrospectively analyzed the records of 125 patients with low back pain (LBP) suspected of having SpA. Each patient underwent sacroiliac joint spectral CT examination.
Objective: The aim of this study was to directly compare metal artifact reduction (MAR) of virtual monoenergetic extrapolations (VMEs) from dual-energy computed tomography (CT) with iterative MAR (iMAR) from single energy in pelvic CT with hip prostheses.
Materials And Methods: A human pelvis phantom with unilateral or bilateral metal inserts of different material (steel and titanium) was scanned with third-generation dual-source CT using single (120 kVp) and dual-energy (100/150 kVp) at similar radiation dose (CT dose index, 7.15 mGy).