Host mixtures are a promising method for agroecological plant disease control. Plant immunity is key to the success of host mixtures against polymorphic pathogen populations. This immunity results from priming-induced cross-protection, whereby plants able to resist infection by specific pathogen genotypes become more resistant to other pathogen genotypes.
View Article and Find Full Text PDFThe induction of general plant defense responses following the perception of external elicitors is now regarded as the first level of the plant immune response. Depending on the involvement or not of these molecules in pathogenicity, this induction of defense is called either Pathogen-Associated Molecular Pattern (PAMP) Triggered Immunity or Pattern Triggered Immunity-both abbreviated to PTI. Because PTI is assumed to be a widespread and stable form of resistance to infection, understanding the mechanisms driving it becomes a major goal for the sustainable management of plant-pathogen interactions.
View Article and Find Full Text PDFPhytophthora infestans causes the devastating potato late blight disease, which is widely controlled with fungicides. However, the debate about chemical control is fueling a promotion toward alternative methods. In this context, the enhancement of natural plant immunity could be a strategy for more sustainable protection.
View Article and Find Full Text PDFLipopolysaccharides (LPS) are a component of the outer cell surface of almost all Gram-negative bacteria and play an essential role for bacterial growth and survival. Lipopolysaccharides represent typical microbe-associated molecular pattern (MAMP) molecules and have been reported to induce defense-related responses, including the expression of defense genes and the suppression of the hypersensitive response in plants. However, depending on their origin and the challenged plant, LPS were shown to have complex and different roles.
View Article and Find Full Text PDFMolecules
September 2014
The induction of plant immunity by Pathogen Associated Molecular Patterns (PAMPs) constitutes a powerful strategy for crop protection. PAMPs indeed induce general defense responses in plants and thus increase plant resistance to pathogens. Phytophthora infestans culture filtrates (CCFs) are known to induce defense responses and decrease the severity of soft rot due to Pectobacterium atrosepticum in potato tubers.
View Article and Find Full Text PDFPotato and tobacco cells are differentially suited to study oxylipin pathway and elicitor-induced responses. Synthesis of oxylipins via the lipoxygenase (LOX) pathway provides plant cells with an important class of signaling molecules, related to plant stress responses and innate immunity. The aim of this study was to evaluate the induction of LOX pathway in tobacco and potato cells induced by a concentrated culture filtrate (CCF) from Phytophthora infestans and lipopolysaccharide (LPS) from Pectobacterium atrosepticum.
View Article and Find Full Text PDFPhysiological and molecular mechanisms underlying quantitative resistance of plants to pathogens are still poorly understood, but could depend upon differences in the intensity or timing of general defense responses. This may be the case for the biosynthesis of phenolics which are known to increase after elicitation by pathogens. We thus tested the hypothesis that differences in quantitative resistance were related to differential induction of phenolics by pathogen-derived elicitors.
View Article and Find Full Text PDFA direct, label-free immunosensor was designed for the rapid detection and quantification of staphylococcal enterotoxin A (SEA) in buffered solutions using quartz crystal microbalance with dissipation (QCM-D) as transduction method. The sensing layer including the anti-SEA antibody was constructed by chemisorption of a self-assembled monolayer of cysteamine on the gold electrodes placed over the quartz crystal sensor followed by activation of the surface amino groups with the rigid homobifunctional cross-linker 1,4-phenylene diisothiocyanate (PDITC) and covalent linking of binding protein (protein A or protein G). Four anti-SEA antibodies (two of which from commercial source) have been selected to set up the most sensitive detection device.
View Article and Find Full Text PDFWhile the mechanisms underlying quantitative resistance of plants to pathogens are still not fully elucidated, the Pathogen-Associated Molecular Patterns (PAMPs)-triggered response model suggests that such resistance depends on a dynamic interplay between the plant and the pathogen. In this model, the pathogens themselves or elicitors they produce would induce general defense pathways, which in turn limit pathogen growth and host colonisation. It therefore suggests that quantitative resistance is directly linked to a common set of general host defense mechanisms, but experimental evidence is still inconclusive.
View Article and Find Full Text PDFMol Plant Microbe Interact
February 2010
Pectobacterium carotovorum are economically important plant pathogens that cause plant soft rot. These enterobacteria display high diversity world-wide. Their pathogenesis depends on production and secretion of virulence factors such as plant cell wall-degrading enzymes, type III effectors, a necrosis-inducing protein, and a secreted virulence factor from Xanthomonas spp.
View Article and Find Full Text PDFCell Microbiol
January 2007
When a potential pathogen attempts to infect a plant, biochemical and molecular communication takes place and leads to the induction of plant defence mechanisms. In the case of efficient defence, visible symptoms are restricted and the pathogen does not multiply (incompatible interaction); when defence is inefficient, the plant becomes rapidly infected (compatible interaction). During the last 30 years, a growing body of knowledge on plant-pathogen interactions has been gathered, and a large number of studies investigate the induction of various plant defence reactions by pathogens or by pathogen-derived compounds.
View Article and Find Full Text PDF