Publications by authors named "Val C Sheffield"

Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease.

View Article and Find Full Text PDF

The BBSome, a complex of several Bardet-Biedl syndrome (BBS) proteins including BBS1, has emerged as a critical regulator of energy homeostasis. Although the BBSome is best known for its involvement in cilia trafficking, through a process that involve BBS3, it also regulates the localization of cell membrane receptors underlying metabolic regulation. Here, we show that inducible gene deletion selectively in proopiomelanocortin (POMC) neurons cause a gradual increase in body weight, which was associated with higher fat mass.

View Article and Find Full Text PDF

Mutations in myocilin () are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease.

View Article and Find Full Text PDF

Blindness in Bardet-Biedl syndrome (BBS) is caused by dysfunction and loss of photoreceptor cells in the retina. , mutations of which account for approximately 21% of all BBS cases, encodes a chaperonin protein indispensable for the assembly of the BBSome, a cargo adaptor important for ciliary trafficking. The loss of BBSome function in the eye causes a reduced light sensitivity of photoreceptor cells, photoreceptor ciliary malformation, dysfunctional ciliary trafficking, and photoreceptor cell death.

View Article and Find Full Text PDF

Objective: The essential role of mitochondria in regulation of metabolic function and other physiological processes has garnered enormous interest in understanding the mechanisms controlling the function of this organelle. We assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins, in the control of mitochondria dynamic and function.

Methods: We used a multidisciplinary approach that include CRISPR/Cas9 technology-mediated generation of a stable Bbs1 gene knockout hypothalamic N39 neuronal cell line.

View Article and Find Full Text PDF

Bardet-Biedl syndrome (BBS) is a multi-organ autosomal-recessive disorder caused by mutations in at least 22 different genes. A constant feature is early-onset retinal degeneration leading to blindness. Among the most common forms is BBS type 10 (BBS10), which is caused by mutations in a gene encoding a chaperonin-like protein.

View Article and Find Full Text PDF
Article Synopsis
  • Primary cilia are rod-shaped structures on most neurons in the mammalian brain, crucial for signaling and linked to various neurological disorders when dysfunctional.
  • Research shows that disrupting the localization of the dopamine receptor 1 (D) in these cilia contributes to obesity in mice, mainly due to decreased locomotor activity rather than increased food consumption.
  • The study highlights the significant role of neuronal cilia in maintaining proper GPCR signaling, which is essential for normal neurological function and overall behavior.
View Article and Find Full Text PDF
Article Synopsis
  • - The rise of infectious SARS-CoV-2 variants has created a need for fast and accessible COVID-19 testing, but current testing methods are limited by shortages of essential supplies and healthcare personnel, prompting the development of a simple spit test called Patient Self-Collection of Sample-CoV2.
  • - This testing method involves self-collecting deep throat sputum without swabs, utilizing a specific extraction method and real-time reverse transcription polymerase chain reaction (RT-PCR) to detect the virus and evaluate its sensitivity, specificity, and detection limits.
  • - Results indicate this spit-test accurately identified all 42 confirmed COVID-19 cases, demonstrating a 100% sensitivity and specificity, and proving to be effective on a college campus setting
View Article and Find Full Text PDF

Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension.

View Article and Find Full Text PDF

The primary cilium is a highly specialized and evolutionary conserved organelle in eukaryotes that plays a significant role in cell signaling and trafficking. Over the past few decades tremendous progress has been made in understanding the physiology of cilia and the underlying pathomechanisms of various ciliopathies. Syndromic ciliopathies consist of a group of disorders caused by ciliary dysfunction or abnormal ciliogenesis.

View Article and Find Full Text PDF

Bardet-Biedl syndrome (BBS) is a hereditary genetic disorder that results in numerous clinical manifestations including olfactory dysfunction. Of at least 21 BBS-related genes that can carry multiple mutations, a pathogenic mutation, BBS1M390R, is the single most common mutation of clinically diagnosed BBS outcomes. While the deletion of BBS-related genes in mice can cause variable penetrance in different organ systems, the impact of the Bbs1M390R mutation in the olfactory system remains unclear.

View Article and Find Full Text PDF

Background: Glaucoma is a leading cause of visual disability and blindness. Release of iris pigment within the eye, pigment dispersion syndrome (PDS), can lead to one type of glaucoma known as pigmentary glaucoma. PDS has a genetic component, however, the genes involved with this condition are largely unknown.

View Article and Find Full Text PDF

Primary cilia are microtubule-based organelles present on most cells that regulate many physiological processes, ranging from maintaining energy homeostasis to renal function. However, the role of these structures in the regulation of behavior remains unknown. To study the role of cilia in behavior, we employ mouse models of the human ciliopathy, Bardet-Biedl Syndrome (BBS).

View Article and Find Full Text PDF

Bardet-Biedl syndrome (BBS) is a rare ciliopathy for which there are no current effective treatments. BBS is a genetically heterogeneous disease, though the M390R mutation in BBS1 is involved in ~25% of all genetic diagnoses of BBS. The principle features of BBS include retinal degeneration, obesity, male infertility, polydactyly, intellectual disability, and renal abnormalities.

View Article and Find Full Text PDF

Elevation of intraocular pressure (IOP) due to trabecular meshwork (TM) damage is associated with primary open-angle glaucoma (POAG). Myocilin mutations resulting in elevated IOP are the most common genetic causes of POAG. We have previously shown that mutant myocilin accumulates in the ER and induces chronic ER stress, leading to TM damage and IOP elevation.

View Article and Find Full Text PDF

The BBSome is a protein complex consisting of BBS1, BBS2, BBS4, BBS5, BBS7, BBS8, BBS9 and BBS18 that associates with intraflagellar transport complexes and specializes in ciliary trafficking. In primary cilia, ciliary entry requires the fully assembled BBSome as well as the small GTPase, ARL6 (BBS3). Retinal photoreceptors possess specialized cilia.

View Article and Find Full Text PDF

The underlying pathological mechanisms of glaucomatous trabecular meshwork (TM) damage and elevation of intraocular pressure (IOP) are poorly understood. Here, we report that the chronic endoplasmic reticulum (ER) stress-induced ATF4-CHOP-GADD34 pathway is activated in TM of human and mouse glaucoma. Expression of ATF4 in TM promotes aberrant protein synthesis and ER client protein load, leading to TM dysfunction and cell death.

View Article and Find Full Text PDF

The field of gene therapy has made significant strides over the last several decades toward the treatment of previously untreatable genetic disease. Gene therapy techniques have been aimed at mitigating disease features of recessive and dominant disorders, as well as several cancers and other diseases. While there have been numerous disease targets of gene therapy trials, only four therapies have reached FDA and/or EMA approval for clinical use.

View Article and Find Full Text PDF

Aberrant redox signaling underlies the pathophysiology of many chronic metabolic diseases, including type 2 diabetes (T2D). Methodologies aimed at rebalancing systemic redox homeostasis have had limited success. A noninvasive, sustained approach would enable the long-term control of redox signaling for the treatment of T2D.

View Article and Find Full Text PDF

Topical ocular delivery is an acceptable and familiar approach for the treatment of common ocular diseases. Novel strategies for the treatment of inherited eye diseases include new pharmacologic agents, gene therapy and genome editing, which lead to the expansion of new management options for eye disorders. The topical ocular delivery of nanocarriers is a technique, which has the potential to facilitate novel treatments.

View Article and Find Full Text PDF