Type 2 diabetes mellitus (T2DM) is accompanied by halogenative stress resulting from the excessive activation of neutrophils and neutrophilic myeloperoxidase (MPO) generating highly reactive hypochlorous acid (HOCl). HOCl in blood plasma modifies serum albumin (Cl-HSA). We studied the formation of neutrophil extracellular traps (NETs) in the whole blood and by isolated neutrophils under the action of Cl-HSA.
View Article and Find Full Text PDFNETosis, i.e., the formation of neutrophil extracellular traps (NET), and neutrophil autophagy are important elements in the pathogenesis and the development of complications of type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDFCationic antimicrobial peptides (CAMPs) have gained attention as promising antimicrobial therapeutics causing lower or no bacterial resistance. Considerable achievements have been made in designing new CAMPs that are highly active as antimicrobials. However, there is a lack of research on their interaction with biologically important proteins.
View Article and Find Full Text PDFCationic antimicrobial peptides (CAMPs) are considered as next-generation antibiotics with a lower probability of developing bacterial resistance. In view of potential clinical use, studies on CAMP biocompatibility are important. This work aimed to evaluate the behavior of synthetic short CAMPs (designed using bioinformatic analysis of the medicinal leech genome and microbiome) in direct contact with blood cells and plasma.
View Article and Find Full Text PDFAn understanding of the consequences of oxidative/halogenative stress triggered by neutrophil activation is impossible without considering NETosis. NETosis, formation of neutrophil extracellular traps (NETs), is known to promote microthrombus formation and impair wound healing in type 2 diabetes mellitus (T2DM) patients. Therefore, there is a need to search for drugs and treatment approaches that could prevent excessive NET formation.
View Article and Find Full Text PDFIn cases of any acute surgical abdominal disease the progression of purulent inflammation can lead to local or diffuse peritonitis. The indicators of the degree and specificity of the inflammatory response in blood such as cytokine concentration, neutrophil activity, plasma antioxidant capacity (thiols concentration) could be considered as potential predictors of complications. The luminol-dependent chemiluminescence (CL) response of blood activated by the phorbol ester (PMA), and the concentration of cytokines IL-6, IL-8, IL-10, myeloperoxidase (MPO) and thiols in plasma were measured in patients with uncomplicated condition (group 1, n=8), local peritonitis (group 2, n=9) or diffuse peritonitis (group 3, n=9) at admission to surgery (before surgical operation, b/o), immediately after surgical operation (a/o) and a day after surgery (1 day) as well as in healthy volunteers (norm, n=12).
View Article and Find Full Text PDFSuccessful colonization of the intestine requires that bacteria interact with the innate immune system and, in particular, neutrophils. Progression of inflammatory bowel diseases (IBD) is associated with alterations in gut microbiota, and dysbiosis in Crohn's disease (CD) patients is often associated with an expansion of Escherichia coli. Here, we investigated the ability of such E.
View Article and Find Full Text PDFBacteria colonizing human intestine adhere to the gut mucosa and avoid the innate immune system. We previously demonstrated that Escherichia coli isolates can adsorb mucin from a diluted solution in vitro. Here, we evaluated the effect of mucin adsorption by E.
View Article and Find Full Text PDFOxidative stress and neutrophil activation leading to an increase in myeloperoxidase (MPO), elastase and neutrophil extracellular trap (NET) levels in blood are considered as pathogenic mechanisms responsible for the development of extremity damage in people with type 2 diabetes mellitus (T2DM). The aim of this study was to analyze the relationship between factors, associated with neutrophil activation, and the length of the initial phase of wound healing (the inflammatory phase) in T2DM patients. Patients were divided retrospectively into three groups depending on the damage extent: group 1 (wound on toe) < group 2 (wound on foot) < group 3 (wound on lower leg).
View Article and Find Full Text PDFCells of E. coli isolates from the gut of healthy volunteers (N=5) and patients with Crohn's disease (N=5) and laboratory E. coli strain DH5α bound mucin in vitro in similar amounts ranging from 0.
View Article and Find Full Text PDFThis study was carried out to compare the enzymatic and bactericidal activity of mature, dimeric myeloperoxidase (MPO) and its monomeric form. Dimeric MPO was isolated from HL-60 cells. Hemi-MPO obtained from dimeric MPO by reductive cleavage of a disulfide bond between protomeric subunits was used as the monomeric form.
View Article and Find Full Text PDFMyeloperoxidase (MPO), found mainly in neutrophils, is released in inflammation. MPO produces reactive halogen species (RHS), which are bactericidal agents. However, RHS overproduction, i.
View Article and Find Full Text PDFIn the blood of children (n=16) with large thermal skin burns (> 20% of total body surface), luminol-dependent chemiluminescence (CL) of neutrophils stimulated with phorbol-12-myristate-13-acetate (PMA) and myeloperoxidase (MPO) activity in neutrophils and plasma were assayed in the early period (1-7 post-burn days). PMA-stimulated neutrophils in thermally injured patients produced higher CL than those in a reference group of healthy children (n=24), p<0.01.
View Article and Find Full Text PDFReduction of thrombogenicity of carbon nanotubes is an important prerequisite for their biomedical use. We assessed the thrombogenic activity of carboxylated single-walled carbon nanotubes (c-SWCNTs) and covalently PEGylated c-SWNCTs (PEG-SWCNTs) by testing the clotting time of platelet poor plasma and platelet aggregation in whole blood samples, and evaluated the impact of human serum albumin on thrombogenicity of carbon nanotubes. Both types of SWCNTs exhibited considerable thrombogenic activity.
View Article and Find Full Text PDFPerspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H(2)O(2) system or by hypochlorite.
View Article and Find Full Text PDFThe mechanism of interaction of hypochlorite and hypobromite formed in myeloperoxidase catalysis with lipids of human blood low-density lipoprotein is described. Both agents react with unsaturated lipids via two mechanisms: molecular (with the formation of mainly chloro- or bromohydrins and lysophospholipids) and free-radical (paralleled by lipid peroxidation). These reactions modify physicochemical properties of low-density lipoproteins and disorder their lipid-transporting function thus initiating early stages of atherosclerosis development.
View Article and Find Full Text PDFThe leukocyte enzyme myeloperoxidase (MPO) is capable of catalyzing the oxidation of chloride and bromide ions, at physiological concentrations of these substrates, by hydrogen peroxide, generating hypochlorous acid (HOCl) and hypobromous acid (HOBr), respectively. Our previous results showed that the hypohalous acids formed react with double bonds in phosphatidylcholines (PCs) to produce chloro- and bromohydrins. Lysophosphatidylcholine (lyso-PC) is additionally formed in PCs with two or more double bonds.
View Article and Find Full Text PDFAutooxidation of low-density lipoproteins during incubation at 37 degrees C was accompanied by accumulation of LPO products, decrease in UV autofluorescence (FUV), and increase in autofluorescence in the visible band (FVIS). The degree of low-density lipoprotein modification was estimated by calculating the FVIS/FUV ratio. A positive correlation was revealed between this ratio and concentration of thiobarbituric acid-reactive LPO products (r=0.
View Article and Find Full Text PDFIn this work, we studied whether chondroitin sulfates and dextran sulfates (DXSs) can influence hypochlorite-induced peroxidation of phosphatidylcholine (PC) liposomes. Multilamellar liposomes (2 mg lipid/ml) were prepared in phosphate buffer, pH 7.4, with NaCl or not and exposed to reagent HOCl/ClO- (1mM) at 37 degrees C in the presence of different concentrations of chondroitin 6-sulfate (C6S), chondroitin 4-sulfate (C4S), DXS 8000, DXS 40,000, and DXS 500,000.
View Article and Find Full Text PDFDifferent approaches based on the spin probe method were used to compare the physical state of the surface lipid monolayer in subfractions of low-density lipoproteins: in native low-density lipoproteins constituting the bulk of human blood low-density lipoproteins and in circulating multiple-modified low-density lipoproteins whose portion is minor in healthy persons but significantly increases in atherosclerotic patients. The data obtained in in vitro experiments suggest that circulating multiple-modified low-density lipoproteins possess atherogenic properties. The order parameter S, rotational correlation time tau, and hydrophobicity parameter h were calculated from electron spin resonance spectra of a series of spin probes whose paramagnetic groups are located at different depths of the lipid monolayer.
View Article and Find Full Text PDFThe role of physico-chemical rearrangements in the cell plasmalemma of Acholeplasma laidlawii in the development of resistance to tetracycline was investigated. The cells of A.laidlawii were shown to be tolerant to tetracycline and to preserve a rather high titre of the cells even at a concentration of the antibiotic in the inoculation medium much higher than the MIC.
View Article and Find Full Text PDFBiull Eksp Biol Med
September 1998
The investigation of the effect of oxidized lipoproteins on platelet activity is important for the understanding of the plague formation under atherosclerosis. In the present work, we examined the influence of low density lipoproteins (LDL) on ADP-induced platelet aggregation in the platelet rich plasma. In was demonstrated that mixing of plasma and LDL was accompanied by the decrease of ADP-induced aggregation parameters as compared to control (mixing with buffer).
View Article and Find Full Text PDFThe effect of metal cations on copper-catalyzed lipid peroxidation (LPO) of low density lipoproteins (LDL) was examined. The presence of metal cations in the incubation media containing LDL (0.8 mg protein/ml) and CuSO4 (0-80 microM) influenced on LPO of LDL as evident by the measurement of TBARS.
View Article and Find Full Text PDF