Glycogen-storing so-called clear cell kidney tubules (CCTs), precursor lesions of renal cell carcinoma, have been described in diabetic rats and in humans. The lesions show upregulation of the Akt/mTOR-pathway and the related transcription factor carbohydrate responsive element binding protein (ChREBP), which is supposedly pro-oncogenic. We investigated the effect of ChREBP-knockout on nephrocarcinogenesis in streptozotocin-induced diabetic and normoglycemic mice.
View Article and Find Full Text PDFBackground: Recent evidence suggests that a majority of RNAs in the genome do not code for proteins. They are located in the sense (S) or antisense (AS) orientation and, to date, the functional significance of these non-coding RNAs (ncRNAs) is poorly understood. Here, we examined the relationship between S and AS transcripts in the regulation of a key angiogenesis gene, Delta-like 4 (Dll4).
View Article and Find Full Text PDFBackground: The mitogen-activated protein kinases (MAPKs) pathway is critical for cellular signaling, and proteins such as phosphatases that regulate this pathway are important for normal tissue development. Based on our previous work on dual specificity phosphatase-5 (DUSP5), and its role in embryonic vascular development and disease, we hypothesized that mutations in DUSP5 will affect its function.
Results: In this study, we tested this hypothesis by generating full-length glutathione-S-transferase-tagged DUSP5 and serine 147 proline mutant (S147P) proteins from bacteria.
In this study, we have identified a novel member of the AMPK family, namely Sucrose non-fermenting related kinase (Snrk), that is responsible for maintaining cardiac metabolism in mammals. SNRK is expressed in the heart, and brain, and in cell types such as endothelial cells, smooth muscle cells and cardiomyocytes (CMs). Snrk knockout (KO) mice display enlarged hearts, and die at postnatal day 0.
View Article and Find Full Text PDFThe extracellular matrix plays a critical role in neural crest (NC) cell migration. In this study, we characterize the contribution of the novel GPI-linked matrix metalloproteinase (MMP) zebrafish mmp17b. Mmp17b is expressed post-gastrulation in the developing NC.
View Article and Find Full Text PDFMechanical tension is an ever-present physiological stimulus essential for the development and homeostasis of locomotory, cardiovascular, respiratory, and urogenital systems. Tension sensing contributes to stem cell differentiation, immune cell recruitment, and tumorigenesis. Yet, how mechanical signals are transduced inside cells remains poorly understood.
View Article and Find Full Text PDFThe assembly of striated muscle myofibrils is a multistep process in which a variety of proteins is involved. One of the first and most important steps in myofibrillogenesis is the arrangement of thin myofilaments into ordered I-Z-I brushes, requiring the coordinated activity of numerous actin binding proteins. The early expression of myopodin prior to sarcomeric α-actinin, as well as its binding to actin, α-actinin and filamin indicate an important role for this protein in actin cytoskeleton remodelling with the precise function of myopodin in this process yet remaining to be resolved.
View Article and Find Full Text PDFThe present study examined the role of the dual-specificity protein phosphatase-5 (DUSP-5) in the pressure-induced myogenic responses of organ-cultured cerebral arterial segments. In these studies, we initially compared freshly isolated and organ-cultured cerebral arterial segments with respect to responses to step increases in intravascular pressure, vasodilator and vasoconstrictor stimuli, activities of the large-conductance arterial Ca(2+)-activated K(+) (K(Ca)) single-channel current, and stable protein expression of DUSP-5 enzyme. The results demonstrate maintained pressure-dependent myogenic vasoconstriction, DUSP-5 protein expression, endothelium-dependent and -independent dilations, agonist-induced constriction, and unitary K(Ca) channel conductance in organ-cultured cerebral arterial segments similar to that in freshly isolated cerebral arteries.
View Article and Find Full Text PDFAlternative splicing has a major role in cardiac adaptive responses, as exemplified by the isoform switch of the sarcomeric protein titin, which adjusts ventricular filling. By positional cloning using a previously characterized rat strain with altered titin mRNA splicing, we identified a loss-of-function mutation in the gene encoding RNA binding motif protein 20 (Rbm20) as the underlying cause of pathological titin isoform expression. The phenotype of Rbm20-deficient rats resembled the pathology seen in individuals with dilated cardiomyopathy caused by RBM20 mutations.
View Article and Find Full Text PDFHere we introduce myopodin as a novel filamin C binding partner. Corroborative yeast two-hybrid and biochemical analyses indicate that the central part of myopodin that shows high homology to the closely related protein synaptopodin and that is common to all its currently known or predicted variants interacts with filamin C immunoglobulin-like domains 20-21. A detailed characterization of the previously described interaction between myopodin and alpha-actinin demonstrates for the first time that myopodin contains three independent alpha-actinin-binding sites.
View Article and Find Full Text PDFAims: Xin is a striated muscle-specific F-actin binding protein that has been implicated in cardiomyopathies. In cardiomyocytes, Xin is localized at intercalated discs (IDs). Mice lacking only two of the three Xin isoforms (XinAB(-/-) mice) develop severe cardiac hypertrophy.
View Article and Find Full Text PDFMechanical instability of skeletal muscle cells is the major cause of congenital muscular dystrophy. Here we show that the zebrafish lost-contact mutant, that lacks a functional integrin-linked kinase (ilk) gene, suffers from mechanical instability of skeletal muscle fibres. With genetic and morpholino knock-down experiments we demonstrate that: 1) laminin, itgalpha7, Ilk and beta-parvin are all critical for mechanical stability in skeletal muscles.
View Article and Find Full Text PDFBackground: Extracellular matrix proteins, such as laminins, and endothelial cells are known to influence cardiomyocyte performance; however, the underlying molecular mechanisms remain poorly understood.
Methods And Results: We used a forward genetic screen in zebrafish to identify novel genes required for myocardial function and were able to identify the lost-contact (loc) mutant, which encodes a nonsense mutation in the integrin-linked kinase (ilk) gene. This loc/ilk mutant is associated with a severe defect in cardiomyocytes and endothelial cells that leads to severe myocardial dysfunction.
Filamin c is the predominantly expressed filamin isoform in striated muscles. It is localized in myofibrillar Z-discs, where it binds FATZ and myotilin, and in myotendinous junctions and intercalated discs. Here, we identify Xin, the protein encoded by the human gene 'cardiomyopathy associated 1' (CMYA1) as filamin c binding partner at these specialized structures where the ends of myofibrils are attached to the sarcolemma.
View Article and Find Full Text PDFXin is a protein that is expressed during early developmental stages of cardiac and skeletal muscles. Immunolocalization studies indicated a peripheral localization in embryonic mouse heart, where Xin localizes with beta-catenin and N-cadherin. In adult tissues, Xin is found primarily in the intercalated discs of cardiomyocytes and the myotendinous junctions of skeletal muscle cells, both specialized attachment sites of the myofibrillar ends to the sarcolemma.
View Article and Find Full Text PDF