We investigated the role of the endoplasmic reticulum (ER) stress-regulated long noncoding RNA (lncRNA) lncMGC in pancreatic islets and the pathology of type 1 diabetes (T1D), as well as the potential of lncMGC-based therapeutics. , blood glucose levels (BGLs) and HbA1c were significantly lower in lncMGC-knockout (KO)-streptozotocin (STZ)-treated diabetic mice compared to wild-type STZ. Antisense oligonucleotides (GapmeR) targeting lncMGC significantly attenuated insulitis and BGLs in T1D NOD mice compared to GapmeR-negative control (NC).
View Article and Find Full Text PDFAm J Physiol Renal Physiol
September 2024
Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD.
View Article and Find Full Text PDFBackground: Obesity and diabetes are associated with elevated free fatty acids like palmitic acid (PA), which promote chronic inflammation and impaired inflammation resolution associated with cardiometabolic disorders. Long noncoding RNAs (lncRNAs) are implicated in inflammatory processes; however, their roles in PA-regulated inflammation and resolution are unclear.
Methods: We performed RNA-sequencing analysis to identify PA-regulated coding genes and novel lncRNAs in CD14 monocytes from healthy volunteers.
Due to a tragic increase in the incidences of diabetes globally, diabetic kidney disease (DKD) has emerged as one of the leading causes of end-stage renal diseases (ESRD). Hyperglycaemia-mediated overactivation of the renin-angiotensin-aldosterone system (RAAS) is key to the development and progression of DKD. Consequently, RAAS inhibition by angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs) is the first-line therapy for the clinical management of DKD.
View Article and Find Full Text PDFBackground: Neprilysin inhibitors (NEPi) are assisting the renin-angiotensin system (RAS) inhibitors in halting diabetic cardiomyopathy (DCM). Away from conventional tactic, a recent report revealed the renoprotective potential of NEPi and angiotensin-converting enzyme (ACE2) activator combination therapy against diabetic nephropathy. However, this combination so far not evaluated against DCM, thus the present investigation aiming the same.
View Article and Find Full Text PDFAim: Depressor arm of the renin-angiotensin system (RAS) exerts reno-protective effects in chronic kidney diseases like diabetic nephropathy. However, same is still elusive under AKI and hyperglycaemia comorbidity. Hence, the present study delineates the role of angiotensin-II type 2 receptor (AT2R) and angiotensin-converting enzyme 2 (ACE2) in AKI under normal and hyperglycaemia condition.
View Article and Find Full Text PDFAims: Renin-angiotensin system (RAS) and natriuretic peptides system (NPS) perturbations govern the development of diabetic nephropathy (DN). Hence, in search of a novel therapy against DN, present study targeted both, NPS and RAS simultaneously using a neprilysin inhibitor (NEPi) in combination with either angiotensin receptor blocker (ARB) or angiotensin-converting enzyme 2 (ACE2) activator.
Methods: We induced diabetes in male Wistar rats by a single dose of streptozotocin (55 mg/kg, i.
Background: Natriuretic peptide system (NPS) alterations are involved in pathogenesis of diabetic cardiomyopathy (DCM) and nephropathy (DN), however its epigenetic regulation is still unclear. Interestingly, histone acetylation epigenetically regulates neprilysin expression in Alzheimer's disease.
Objectives: The present study was aimed at delineating role of histone acetylation in regulation of NPS in DCM and DN.
Aims: LCZ696, a first-generation dual angiotensin receptor-neprilysin inhibitor (ARNi), is effective in treating heart failure patients. However, the role of ARNis in treating diabetic cardiomyopathy is poorly understood. This study evaluates the efficacy of a novel combination of telmisartan [angiotensin receptor blocker (ARB)] and thiorphan [neprilysin inhibitor (NEPi)] in ameliorating diabetic cardiomyopathy while, at the same time, exploring the relevant underlying molecular mechanism(s).
View Article and Find Full Text PDFObjectives: Although cardioprotective effects of telmisartan are well explored, its effects on epigenetic alterations associated with type 2 diabetic (T2D) cardiomyopathy remain unmapped. Thus, the present study was designed to evaluate the potential of esculetin and telmisartan combination to reverse histone posttranslational modifications (PTMs) in curbing T2D cardiomyopathy.
Materials And Methods: T2D was induced by high-fat diet feeding along with low dose of streptozotocin (35 mg/kg, I.
Micro and macro vascular complications under diabetic condition are the responses to pathological stimuli exerted by up regulated renin angiotensin system (RAS) via deteriorating vascular physiology. Up-regulated RAS could influence in the adaptive mechanisms of target tissues to alter the abundance of angiotensin II type 1 receptor (AT1) and angiotensin II type 2 receptor (AT2). Such differential regulation of AT1 and AT2 have been reported to be associated with post-translational histone modifications (PTHMs).
View Article and Find Full Text PDFBackground And Purpose: One of the protective actions of angiotensin converting enzyme-2 (ACE2) is the inactivation of angiotensin II. Expression and activity of ACE2 was reduced in glomeruli of diabetic patients and in animal models of diabetes. Recently the potential role of recombinant ACE2 administration in preventing diabetic nephropathy (DN) has been shown.
View Article and Find Full Text PDFBackground: Non-alcoholic fatty liver disease (NAFLD), a chronic metabolic disorder is associated with oxidative stress, inflammation and fibrotic cascades. In this study, we aimed to examine the effects of Esculetin, a well-known anti-oxidant on TGF-β1 mediated liver fibrosis and FoxO1 activity.
Methods: A non-genetic murine model for NAFLD was developed by chronic high fat diet (HFD) (58% calories from fats) feeding in Wistar rats.
Diabetes is an enormous and ever-growing calamity and a global public health threat of the 21st century. Besides insulin and oral hypoglycaemic drugs, blockage of the renin-angiotensin system (RAS) denotes a key pharmacotherapy for the management of cardiovascular (CVD) and chronic kidney diseases (CKD), which are the leading causes of disability and death among diabetic patients. Neprilysin (NEP) inhibition, auxiliary to RAS blockage increases the bioavailability of natriuretic peptides and benefits the cardio-renal system.
View Article and Find Full Text PDFHyperglycaemia-induced expression of extracellular matrix (ECM) components plays a major role in the development of diabetic nephropathy (DN). The epigenetic mechanisms that modulate ECM gene expression in DN remain unclear. Therefore, we examined the role of histone H2A and H2B monoubiquitination on epigenetic chromatin marks, such as histone H3 lysine dimethylation (H3K4Me2, H3K9Me2 and H3K79Me2) in type 1 diabetic rat kidney.
View Article and Find Full Text PDFMonocyte chemoattractant protein (MCP-1) and transforming growth factor-β (TGF-β1)-markers of inflammation and fibrosis, are central to type 2 diabetic nephropathy (T2DN) progression. The epigenetic basis of their expression has also been explored to certain extent. H2A lysine 119 monoubiquitination (H2AK119Ub), a repressive chromatin mark regulates progression of hyperglycaemia induced fibrosis in glomerular mesangial cells.
View Article and Find Full Text PDFAngiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma.
View Article and Find Full Text PDFThe combination of the angiotensin receptor blockers (ARBs) with other synthetic and natural molecules has been reported to have better safety profile and therapeutic efficacy in prevention of diabetes and its associated complications than their monotherapy. Driven by the aforementioned facts, this study was conceived to evaluate the potential additive effect of combination of Telmisartan and Esculetin in prevention of insulin resistance and associated cardiac fibrosis. Recently, we have reported that Esculetin prevented cardiovascular dysfunction associated with insulin resistance (IR) and type 2 diabetes.
View Article and Find Full Text PDFHigh fructose diet (HFrD)-induced insulin resistance (IR) has been reported to be associated with an increase in albuminuria, glomerular hypertrophy and inflammation in kidney. However, the molecular mechanisms associated with high fructose-induced IR and renal dysfunction are still unclear. In the present study, we have investigated the role of nuclear factor of activated T-cell (NFAT) and its inhibitor, Tributylhexadecylphosphoniumbromide (THPB) in high fructose-induced IR and renal injury.
View Article and Find Full Text PDFThe delivery of drugs to brain is a daunting task due to the presence of multiple protective barriers. Nanoparticles (NPs), due to their ability to deliver and accumulate drugs in brain by crossing the blood brain barrier, have emerged as effective brain targeting drug delivery system. The major drawback of NPs obstructing their application in brain related diseases is neurotoxicity which leads to memory deficit, behavioural changes, changes in the structure and membrane potential of the neurons.
View Article and Find Full Text PDFAngiotensin II (Ang II) acts through Angiotensin Converting Enzyme (ACE)/Ang II type 1 receptor (AT1R) axis to promote renal failure whereas the Ang II type 2 receptor (AT2R)/Angiotensin Converting Enzyme 2 (ACE2)/Ang1-7/Mas axis constitutes the protective arm of Renin Angiotensin System (RAS). Though Ang II has been known to activate the Nuclear Factor-κB (NF-κB) signalling pathway through different receptor subtype(s) in different tissues under various diseases, the subtype orchestrating this stimulation in type 2 diabetic kidney remains elusive. ACE2, a protective monocarboxypeptidase, responsible for conversion of Ang II to Ang1-7, opposes the deleterious effects of RAS pathway but how its expression is altered with blockade of AT1R and AT2R is not yet known.
View Article and Find Full Text PDFFoxO1, one of the most widely expressed sub-families of the winged helix forkhead factors, is biologically 'omni-functional' owing to its far-flung roles in metabolism, cell cycle, tissue differentiation and development and oxidative stress response. The knowledge of involvement of FoxO1 in metabolic disorders has long been there, but the potential target remained underutilized due to unavailability of specific and potent inhibitors. The review provides an insight into the role of FoxO1 in orchestrating metabolic diseases' pathogenesis (including diabetes, its secondary complications and obesity) and compiles the literature on FoxO1 inhibitors.
View Article and Find Full Text PDFEsculetin (6, 7- dihydroxycoumarin) was found to be protective against hepatic and renal damage associated with Streptozotocin (STZ) induced type 1 diabetes, because of its radical scavenging property. However, there are no reports regarding its effect on vascular dysfunction under hyperinsulinemic and hyperglycemic conditions. Hence, the present study aimed to investigate the effect of esculetin on vascular dysfunction under these conditions.
View Article and Find Full Text PDFGrowing body of evidence points out the crucial role of ACE2 in preventing atherosclerosis. However, data on how atherosclerosis affects ACE2 expression in heart and kidney remains unknown. Atherosclerosis was induced by feeding New Zealand White rabbits with high cholesterol diet (HCD - 2%) for 12 weeks and atorvastatin was administered (5mg/kg/day p.
View Article and Find Full Text PDF