The cornerstone of structural biology is the unique relationship between protein sequence and the 3D structure at equilibrium. Although intrinsically disordered proteins (IDPs) do not fold into a specific 3D structure, breaking this paradigm, some IDPs exhibit large-scale organization, such as liquid-liquid phase separation. In such cases, the structural plasticity has the potential to form numerous self-assembled structures out of thermal equilibrium.
View Article and Find Full Text PDFThe cornerstone of structural biology is the unique relationship between protein sequence and the 3D structure at equilibrium. Although intrinsically disordered proteins (IDPs) do not fold into a specific 3D structure, breaking this paradigm, some IDPs exhibit large-scale organization, such as liquid-liquid phase separation. In such cases, the structural plasticity has the potential to form numerous self-assembled structures out of thermal equilibrium.
View Article and Find Full Text PDFCorrection for 'Understanding the role of co-surfactants in microemulsions on the growth of copper oxalate using SAXS' by Sunaina et al., Phys. Chem.
View Article and Find Full Text PDFSelf-organization of nanoparticles into one-dimensional (1D) nanochains leads to new unpredicted physiochemical properties, which are further exploited to develop photonic or electronic devices. Thus, the controlled fabrication of 1D nanochains requires nanotemplate, which acts as building blocks for the self-assembly of nanoparticles. To address this issue, we designed a hydrotrope (sodium salicylate)-based CTAB/ n-hexanol/water/heptane reverse micellar system.
View Article and Find Full Text PDFDesigning nanostructures of desired morphology calls for development of new synthetic protocols to stimulate structural alterations in templates, modulating the architecture of nano-metric structures. The present study is an endeavor to investigate structural modifications in reverse micellar nanotemplates of a cationic surfactant system, CTAB/butanol/water/isooctane, as a function of hydrotrope concentration (sodium salicylate) and amount of water loading, W, in the micellar pool by synchrotron small-angle X-ray scattering. The micellar structural transition from a one-dimensional cylinder to a prolate ellipsoid can be controlled by tuning the water-to-surfactant molar ratio while the hydrotrope modulates growth of the micellar droplets.
View Article and Find Full Text PDFIn this paper we consider low Péclet number flow in bead packs. A series of relaxation exchange experiments has been conducted and evaluated by ILT analysis. In the resulting correlation maps, we observed a collapse of the signal and a translation towards smaller relaxation times with increasing flow rates, as well as a signal tilt with respect to the diagonal.
View Article and Find Full Text PDF