Major depressive disorder (MDD) is defined by an array of symptoms that make it challenging to understand the condition at a population level. Subtyping offers a way to unpick this phenotypic diversity for improved disorder characterisation. We aimed to identify depression subtypes longitudinally using the Inventory of Depressive Symptomatology: Self-Report (IDS-SR).
View Article and Find Full Text PDFThe Remote Assessment of Disease and Relapse – Alzheimer’s Disease (RADAR-AD) consortium evaluated remote measurement technologies (RMTs) for assessing functional status in AD. The consortium engaged with the European Medicines Agency (EMA) to obtain feedback on identification of meaningful functional domains, selection of RMTs and clinical study design to assess the feasibility of using RMTs in AD clinical studies. We summarized the feedback and the lessons learned to guide future projects.
View Article and Find Full Text PDFBackground: Changes in sleep and circadian function are leading candidate markers for the detection of relapse in Major Depressive Disorder (MDD). Consumer-grade wearable devices may enable remote and real-time examination of dynamic changes in sleep. Fitbit data from individuals with recurrent MDD were used to describe the longitudinal effects of sleep duration, quality, and regularity on subsequent depression relapse and severity.
View Article and Find Full Text PDFBackground: Previous mobile health (mHealth) studies have revealed significant links between depression and circadian rhythm features measured via wearables. However, the comprehensive impact of seasonal variations was not fully considered in these studies, potentially biasing interpretations in real-world settings.
Objective: This study aims to explore the associations between depression severity and wearable-measured circadian rhythms while accounting for seasonal impacts.
Major depressive disorder (MDD) is a chronic illness wherein relapses contribute to significant patient morbidity and mortality. Near-term prediction of relapses in MDD patients has the potential to improve outcomes by helping implement a 'predict and preempt' paradigm in clinical care. In this study, we developed a novel personalized (N-of-1) encoder-decoder anomaly detection-based framework of combining anomalies in multivariate actigraphy features (passive) as triggers to utilize an active concurrent self-reported symptomatology questionnaire (core symptoms of depression and anxiety) to predict near-term relapse in MDD.
View Article and Find Full Text PDFBackground: Speech contains neuromuscular, physiological and cognitive components, and so is a potential biomarker of mental disorders. Previous studies indicate that speaking rate and pausing are associated with major depressive disorder (MDD). However, results are inconclusive as many studies are small and underpowered and do not include clinical samples.
View Article and Find Full Text PDFThe aim of this study was to investigate the feasibility of automatically assessing the 2-Minute Walk Distance (2MWD) for monitoring people with multiple sclerosis (pwMS). For 154 pwMS, MS-related clinical outcomes as well as the 2MWDs as evaluated by clinicians and derived from accelerometer data were collected from a total of 323 periodic clinical visits. Accelerometer data from a wearable device during 100 home-based 2MWD assessments were also acquired.
View Article and Find Full Text PDFBackground: Alterations in heart rate (HR) may provide new information about physiological signatures of depression severity. This 2-year study in individuals with a history of recurrent major depressive disorder (MDD) explored the intra-individual variations in HR parameters and their relationship with depression severity.
Methods: Data from 510 participants (Number of observations of the HR parameters = 6666) were collected from three centres in the Netherlands, Spain, and the UK, as a part of the remote assessment of disease and relapse-MDD study.
The aim of this study was to evaluate the association between changes in the autonomic control of cardiorespiratory system induced by walk tests and outcome measures in people with Multiple Sclerosis (pwMS). Electrocardiogram (ECG) recordings of 148 people with Relapsing-Remitting MS (RRMS) and 58 with Secondary Progressive MS (SPMS) were acquired using a wearable device before, during, and after walk test performance from a total of 386 periodical clinical visits. A subset of 90 participants repeated a walk test at home.
View Article and Find Full Text PDFRecent growth in digital technologies has enabled the recruitment and monitoring of large and diverse populations in remote health studies. However, the generalizability of inference drawn from remotely collected health data could be severely impacted by uneven participant engagement and attrition over the course of the study. We report findings on long-term participant retention and engagement patterns in a large multinational observational digital study for depression containing active (surveys) and passive sensor data collected via Android smartphones, and Fitbit devices from 614 participants for up to 2 years.
View Article and Find Full Text PDFBackground: Changes in lifestyle, finances and work status during COVID-19 lockdowns may have led to biopsychosocial changes in people with pre-existing vulnerabilities such as Major Depressive Disorders (MDDs) and Multiple Sclerosis (MS).
Methods: Data were collected as a part of the RADAR-CNS (Remote Assessment of Disease and Relapse-Central Nervous System) program. We analyzed the following data from long-term participants in a decentralized multinational study: symptoms of depression, heart rate (HR) during the day and night; social activity; sedentary state, steps and physical activity of varying intensity.
Comput Methods Programs Biomed
December 2022
Background And Objectives: Multiple sclerosis (MS) is a progressive inflammatory and neurodegenerative disease of the central nervous system affecting over 2.5 million people globally. In-clinic six-minute walk test (6MWT) is a widely used objective measure to evaluate the progression of MS.
View Article and Find Full Text PDFBackground: Gait is an essential manifestation of depression. However, the gait characteristics of daily walking and their relationships with depression have yet to be fully explored.
Objective: The aim of this study was to explore associations between depression symptom severity and daily-life gait characteristics derived from acceleration signals in real-world settings.
Background: Remote sensing for the measurement and management of long-term conditions such as Major Depressive Disorder (MDD) is becoming more prevalent. User-engagement is essential to yield any benefits. We tested three hypotheses examining associations between clinical characteristics, perceptions of remote sensing, and objective user engagement metrics.
View Article and Find Full Text PDFBackground: The mobility of an individual measured by phone-collected location data has been found to be associated with depression; however, the longitudinal relationships (the temporal direction of relationships) between depressive symptom severity and phone-measured mobility have yet to be fully explored.
Objective: We aimed to explore the relationships and the direction of the relationships between depressive symptom severity and phone-measured mobility over time.
Methods: Data used in this paper came from a major EU program, called the Remote Assessment of Disease and Relapse-Major Depressive Disorder, which was conducted in 3 European countries.
Background: Major Depressive Disorder (MDD) is prevalent, often chronic, and requires ongoing monitoring of symptoms to track response to treatment and identify early indicators of relapse. Remote Measurement Technologies (RMT) provide an opportunity to transform the measurement and management of MDD, via data collected from inbuilt smartphone sensors and wearable devices alongside app-based questionnaires and tasks. A key question for the field is the extent to which participants can adhere to research protocols and the completeness of data collected.
View Article and Find Full Text PDFBackground: Most smartphones and wearables are currently equipped with location sensing (using GPS and mobile network information), which enables continuous location tracking of their users. Several studies have reported that various mobility metrics, as well as home stay, that is, the amount of time an individual spends at home in a day, are associated with symptom severity in people with major depressive disorder (MDD). Owing to the use of small and homogeneous cohorts of participants, it is uncertain whether the findings reported in those studies generalize to a broader population of individuals with MDD symptoms.
View Article and Find Full Text PDFBackground: Although the benefits of exercise on Major Depressive Disorder (MDD) are well established, longitudinal studies of objectively measured activity in clinical populations are needed to establish specific guidelines for exercise by persons with moderate-to-severe depression. This study examines the association between objectively assessed daily step count and depressive symptoms over a 24-week follow- up period in outpatients receiving treatment for moderate-to-severe depression.
Methods: Participants were US Veterans with MDD enrolled in the Precision Medicine in Mental Health Care study (PRIME Care), a pragmatic, multi-site, randomized, controlled trial that examines the utility of genetic testing in the context of pharmacotherapy for MDD.
This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHealth research project. Heart-rate data was remotely collected using a Fitbit wristband. COVID-19 infection was either confirmed through a positive swab test, or inferred through a self-reported set of recognised symptoms of the virus.
View Article and Find Full Text PDFIdentification of risk factors of treatment resistance may be useful to guide treatment selection, avoid inefficient trial-and-error, and improve major depressive disorder (MDD) care. We extended the work in predictive modeling of treatment resistant depression (TRD) via partition of the data from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) cohort into a training and a testing dataset. We also included data from a small yet completely independent cohort RIS-INT-93 as an external test dataset.
View Article and Find Full Text PDF