To explore the role of the liquid interface in mediating reactivity in small compartments, the formation kinetics of zymonic acid (ZA) is measured in submicron aerosols (average radius = 240 nm) using mass spectrometry. The formation of ZA, from a condensation reaction of two pyruvic acid (PA) molecules, proceeds over days in bulk solutions, while in submicron aerosols, it occurs in minutes. The experimental results are replicated in a kinetic model using an apparent interfacial reaction rate coefficient of = (0.
View Article and Find Full Text PDFLactic acid, a small α-hydroxyacid, is ubiquitous in both indoor and outdoor environments. Recently, the photochemistry of lactic acid has garnered interest among the abiotic organic chemistry community as it would have been present in abiotic settings and photoactive with the high-energy solar radiation that would have been available in the low oxygen early Earth environment. Additionally, we propose that the photochemistry of lactic acid is relevant to modern Earth during indoor ultraviolet-C (UVC) sterilization procedures as lactic acid is emitted by humans and is thus prevalent in indoor environments where UVC sterilization is increasingly being used.
View Article and Find Full Text PDFOrganic molecules, including α-hydroxyacids, are ubiquitous in the natural environment. Often found at water-air interfaces, organic molecules can alter the structure of the interface or participate in interfacial chemistry. Despite their prevalence in the environment, the structure and ordering of α-hydroxyacids have not been widely investigated at water-air interfaces, and the impact of the hydrophobic tail length on structure has not been explored.
View Article and Find Full Text PDFThe spectroscopy of all--retinoic acid (ATRA), an important molecule of biological origin that can be found in nature, is investigated at the air-water interface using UV-Vis and IR reflection spectroscopy. We employ a UV-Vis reflection absorption spectroscopy (RAS) experiment along with infrared reflection absorption spectroscopy (IR-RAS) to probe ATRA at the air-water interface. We elucidate the factors influencing the spectroscopy of ATRA at the air-water interface and compare its spectra at the water surface with results of bulk samples obtained with conventional spectroscopic methods and computational chemistry.
View Article and Find Full Text PDFAlpha-keto acids are environmentally and biologically relevant species whose chemistry has been shown to be influenced by their local environment. Vibrational spectroscopy provides useful ways to probe the potential inter- and intramolecular interactions available to them in several phases. We measure and compare the IR spectra of 2-oxo-octanoic acid (2OOA) in the gas phase, solid phase, and at the air-water interface.
View Article and Find Full Text PDFThe asymmetric water-air interface provides a dynamic aqueous environment with properties that are often very different than bulk aqueous or gaseous phases and promotes reactions that are thermodynamically, kinetically, or otherwise unfavorable in bulk water. Prebiotic chemistry faces a key challenge: water is necessary for life yet reduces the efficiency of many biomolecular synthesis reactions. This perspective considers water-air interfaces as auspicious reaction environments for abiotic synthesis.
View Article and Find Full Text PDFGas-phase reactions between pyruvic acid (PA) and HO radicals were examined using ab initio quantum chemistry and transition state theory. The rate coefficients were determined over a temperature range of 200-400 K including tunneling contributions. Six potential reaction pathways were identified.
View Article and Find Full Text PDFWe study the primary photolysis dynamics of aqueous lactate induced by photo-excitation at λ = 200 nm. Our calculations indicate that both decarboxylation and dehydroxylation are energetically possible, but decarboxylation is favoured dynamically. UV pump - IR probe transient absorption spectroscopy shows that the photolysis is dominated by decarboxylation, whereas dehydroxylation is not observed.
View Article and Find Full Text PDFInterfacial regions are unique chemical reaction environments that can promote chemistry not found elsewhere. The air-water interface is ubiquitous in the natural environment in the form of ocean surfaces and aqueous atmospheric aerosols. Here we investigate the chemistry and photochemistry of pyruvic acid (PA), a common environmental species, at the air-water interface and compare it to its aqueous bulk chemistry using two different experimental setups: (1) a Langmuir-Blodgett trough, which models natural water surfaces and provides a direct comparison between the two reaction environments, and (2) an atmospheric simulation chamber (CESAM) to monitor the chemical processing of nebulized aqueous PA droplets.
View Article and Find Full Text PDFLactic acid, a relevant molecule in biology and the environment, is an α-hydroxy acid with a high propensity to form hydrogen bonds, both internally and to other hydrogen-bond-accepting molecules. This work includes the novel recording of infrared spectra of gas-phase lactic acid using Fourier transform infrared spectroscopy, and the vibrational absorption features of lactic acid are assigned with the aid of computationally simulated vibrational spectra with anharmonic corrections. Theoretical chemistry methods are used to relate intramolecular hydrogen-bond strengths to the relative stability of lactic acid conformers.
View Article and Find Full Text PDFThe conformer-specific reactivity of gas-phase pyruvic acid following the S(nπ*) ← S excitation at λ = 350 nm (290-380 nm) and the effect of water are investigated for the two lowest energy conformers. Conformer-specific gas-phase pyruvic acid photolysis rate constants and their respective populations are measured by monitoring their distinct vibrational OH-stretching frequencies. The geometry, relative energies, fundamental vibrational frequencies, and electronic transitions of the pyruvic acid conformers and their monohydrated complexes are calculated with density functional theory and ab initio methods.
View Article and Find Full Text PDFThe gas-phase reaction of pyruvic acid (PA) with the OH radical is studied theoretically using accurate quantum chemistry and transition state theory. Two chemically distinct H-atom abstraction reactions and two distinct OH addition reactions have been identified. The rate coefficients for these four processes were calculated.
View Article and Find Full Text PDFThe surface chemistry and photochemistry of gas-phase pyruvic acid (CHCOCOOH) on two oxides, AlO and TiO, have been investigated using transmission Fourier transform infrared spectroscopy and mass spectrometry. At 298 K, the carboxylic acid group within pyruvic acid is found to react with surface hydroxyl groups (M-OH, M = Al, Ti) to yield pyruvate as a predominant adsorbed organic species. Upon broad-band UV irradiation (λ > 280 nm), there is a loss of adsorbed pyruvate with the concomitant formation of new products.
View Article and Find Full Text PDFThe adsorption of gas-phase pyruvic acid (CHCOCOOH) on hydroxylated silica particles has been investigated at 296 K using transmission Fourier transform infrared (FTIR) spectroscopy and theoretical simulations. Under dry conditions (<1% relative humidity, RH), both the trans-cis (Tc) and trans-trans (Tt) pyruvic acid conformers are observed on the surface as well as the (hydrogen bonded) pyruvic acid dimer. The detailed surface interactions were further understood through ab initio molecular dynamics simulations.
View Article and Find Full Text PDFWe studied the reaction of electronically excited sulfur dioxide in the triplet state (SO) with a variety of alkane species, including propane, n-butane, isobutane, n-pentane, n-hexane, cyclohexane, n-octane, and n-nonane. Reaction rate constants for the photoinitiated reaction of SO with all of these species were determined and found to be in the range from 3.7 × 10 to 5.
View Article and Find Full Text PDFWorldwide, the number of hip fractures, the most important osteoporotic complication in the elderly, continues to increase in line with the ageing of the population. In some countries, however, including the Ukraine, data on the incidence of hip fracture are limited. This article describes the first analysis to characterize the incidence of hip fracture in the Ukrainian population from the age of 40 years.
View Article and Find Full Text PDFSunlight can initiate photochemical reactions of organic molecules though direct photolysis, photosensitization, and indirect processes, often leading to complex radical chemistry that can increase molecular complexity in the environment. α-Keto acids act as photoinitiators for organic species that are not themselves photoactive. Here, we demonstrate this capability through the reaction of two α-keto acids, pyruvic acid and 2-oxooctanoic acid, with a series of fatty acids and fatty alcohols.
View Article and Find Full Text PDFThe reaction of electronically excited triplet state sulfur dioxide (SO) with water was investigated both theoretically and experimentally. The quantum chemical calculations find that the reaction leads to the formation of hydroxyl radical (OH) and hydroxysulfinyl radical (HOSO) via a low energy barrier pathway. Experimentally the formation of OH was monitored via its reaction with methane, which itself is relatively unreactive with SO, making it a suitable probe of OH production from the reaction of SO and water.
View Article and Find Full Text PDFPyruvic acid is an atmospherically abundant α-keto-acid that degrades efficiently from the troposphere via gas-phase photolysis. To explore conditions relevant to the environment, 2-12 ppm pyruvic acid is irradiated by a solar simulator in the environmental simulation chamber, CESAM. The combination of the long path length available in the chamber and its low surface area to volume ratio allows us to quantitatively examine the quantum yield and photochemical products of pyruvic acid.
View Article and Find Full Text PDF