The use of maxillary expanders has the effect of distancing the maxillary bones at the level of the median palatal suture. During maxillary expansion, the main resistance forces occur at the zygomatico-maxillary sutures, and not in the median palatal suture, which is the basic principle on which this method is based. In this observational study, we evaluated possible complications at the skeletal and dentoalveolar level after palatal split using miniscrew-assisted rapid palatal expansion (MARPE) associated or not with corticopuncture (CP) therapy.
View Article and Find Full Text PDFHead-down tilt (HDT) bed rest elicits changes in cardiac circadian rhythms, generating possible adverse health outcomes such as increased arrhythmic risk. Our aim was to study the impact of HDT duration on the circadian rhythms of heart beat (RR) and ventricular repolarization (QTend) duration intervals from 24-h Holter ECG recordings acquired in 63 subjects during six different HDT bed rest campaigns of different duration (two 5-day, two 21-day, and two 60-day). Circadian rhythms of RR and QTend intervals series were evaluated by Cosinor analysis, resulting in a value of midline (MESOR), oscillation amplitude (OA) and acrophase (φ).
View Article and Find Full Text PDFPurpose: Prolonged weightlessness exposure generates cardiovascular deconditioning, with potential implications on ECG circadian rhythms. Head-down (- 6°) tilt (HDT) bed rest is a ground-based analogue model for simulating the effects of reduced motor activity and fluids redistribution occurring during spaceflight. Our aim was to evaluate the impact of 60-day HDT on the circadianity of RR and ventricular repolarization (QTend) intervals extracted from 24-h Holter ECG recordings, scheduled 9 days before HDT (BDC-9), the 5th (HDT5), 21st (HDT21) and 58th (HDT58) day of HDT, the 1st (R + 0) and 8th (R + 7) day after HDT.
View Article and Find Full Text PDFThis study examined cardiac remodeling and functional changes induced by 5 days of head-down (-6°) bed rest (HDBR) and the effectiveness of short-arm centrifugation (SAC) in preventing them in males. Twelve healthy men (mean age: 33 ± 7) were enrolled in a crossover design study (BR-AG1, European Space Agency), including one sedentary (CTRL) and two daily SAC countermeasures (SAC1, 30 min continuously; SAC2, 30 min intermittently) groups. Measurements included plasma and blood volume and left ventricular (LV) and atrial (LA) dimensions by transthoracic echocardiography (2- and 3-dimensional) and Doppler inflows.
View Article and Find Full Text PDFRespir Physiol Neurobiol
October 2009
Parabolic flight (PF) elicits changes in hydrostatic pressure gradients, resulting in increase (at 0Gz) or decrease (at 1.8Gz) in cardiac preload. The magnitude of these changes on left ventricular (LV) and atrial (LA) volumes, as well as on myocardial velocities, strain and strain rates, is largely unknown.
View Article and Find Full Text PDFBackground: Accurate measurement of beat-to-beat arterial blood pressure is essential for understanding the cardiovascular adaptation to weightlessness; however, the intra-arterial standard of beat-to-beat blood pressure measurement has never been used during space flight because of its invasive nature.
Objectives: The aim of the present study was to compare noninvasive radial artery tonometry blood pressure measurement with intra-radial pressure measurement during microgravity and hypergravity generated by parabolic flights.
Methods: Two study participants, equipped with an intra-radial pressure line on the left arm and a Colin CBM-7000 (Colin Corp.
We tested the hypothesis that in normal subjects, cardiac tissue velocities, strain, and strain rates (SR), measured by Doppler tissue echocardiography (DTE), are preload dependent. To accomplish it, immediately preceding image acquisition, reversible, repeatable, acute nonpharmacological changes in preload were induced by parabolic flight. DTE has been proposed as a new approach to assess left ventricular regional myocardial function by computing tissue velocities, strain, and SR.
View Article and Find Full Text PDFComparative analysis of the QRS voltage response to gravity variations was made using the data about 26 normal human subjects collected in parabolic flights (CNERS-AIRBUS A300 Zero-G, n=23; IL-76MD, n=3) and during the tilt test (head-up tilt at 70 degrees for a min and head-down tilt at-15 degrees for 5 min, n=14). Both the parabolic flights and provocative tilt tests affected R-amplitude in the Z lead. During the hypergravity episodes it was observed in 95% of cases with the mean gain of 16% and maximal--56%.
View Article and Find Full Text PDFWe tested the feasibility of real-time three-dimensional (3D) echocardiographic (RT3DE) imaging to measure left heart volumes at different gravity during parabolic flight and studied the effects of lower body negative pressure (LBNP) as a countermeasure. Weightlessness-related changes in cardiac function have been previously studied during spaceflights using both 2D and 3D echocardiography. Several technical factors, such as inability to provide real-time analysis and the need for laborious endocardial definition, have limited its usefulness.
View Article and Find Full Text PDFAim of the study was to test the feasibility of transthoracic real-time 3D (Philips) echocardiography (RT3D) during parabolic flight, to allow direct measurement of heart chambers volumes modifications during the parabola. One RT3D dataset corresponding to one cardiac cycle was acquired at each gravity phase (1 Gz, 1.8 Gz, 0 Gz, 1.
View Article and Find Full Text PDFAim of the study was to evaluate by transthoracic Doppler the alterations in mitral inflow velocity pattern caused by acute changes in loading conditions occurring during parabolic flights. Each parabola included normogravity (1 Gz, 1 min), mild hypergravity (1.8 Gz, 20 sec), microgravity (0 Gz, 24 sec) and mild hypergravity (1.
View Article and Find Full Text PDFThe aim of the study was to analyze ECG (QRS) voltage responses to body fluid shift due to gravity chances. Acute changes in gravity were created by two ways: 1) changes in gravity value during parabolic flights (within 27 subjects 45 ECG have been analyzed); 2) changes in gravity direction due to rotation of the body during postural tests (within 11 subjects 14 ECG have been analyzed). Results and conclusions.
View Article and Find Full Text PDFThe aim of this experiment was to evaluate the feasibility of a microsurgical procedure in the context of microgravity during parabolic flights. The surgical procedure included the sectioning and repair of a rat sciatic nerve and tail artery with 10/0 monofilament sutures. Both procedures were successful.
View Article and Find Full Text PDFTwo-dimensional echocardiography (2DE) performed during flights with a parabolic trajectory to simulate weightlessness provides a unique means to study left ventricular (LV) modifications to prevent post-flight orthostatic intolerance in astronauts. However, conventional analysis of 2DE is based on manual tracings and depends on experience. Accordingly, the aim was objectively to quantify, from 2DE images, the LV modifications related to different gravity levels, by applying a semi-automated level-set border detection technique.
View Article and Find Full Text PDFJ Appl Physiol (1985)
October 2004
We studied the respiratory output in five subjects exposed to parabolic flights [gravity vector 1, 1.8 and 0 gravity vector in the craniocaudal direction (Gz)] and when switching from sitting to supine (legs bent at the knees). Despite differences in total respiratory compliance (highest at 0 Gz and in supine and minimum at 1.
View Article and Find Full Text PDFModifications of autonomic activity during parabolic flight were studied by a time-variant model able to estimate low (LF, 0.04-0.14 Hz) and high (HF, 0.
View Article and Find Full Text PDFThis study aims to evaluate changes on cardiac chambers size, induced by gravitational stresses. During parabolic flight, seven subjects underwent 2-D transthoracic echocardiography at three different gravity phases (1 Gz, 1.8 Gz, and 0 Gz).
View Article and Find Full Text PDFAnn Noninvasive Electrocardiol
October 2003
Background: It is known that electroconduction of intrathoracic organs and tissues significantly influences the ECG voltage. It changes during therapy or exercise test due to redistribution and/or volume variations of blood and body fluids and their electroconductivity variations. This fact must be taken into consideration during interpretation of corresponding ECG.
View Article and Find Full Text PDFThe volume-pressure relationship of the lung was studied in six subjects on changing the gravity vector during parabolic flights and body posture. Lung recoil pressure decreased by approximately 2.7 cmH(2)O going from 1 to 0 vertical acceleration (G(z)), whereas it increased by approximately 3.
View Article and Find Full Text PDFBratisl Lek Listy
September 2002
The Decarto technique was used to study the orthogonal ECGs recorded in 23 subjects during parabolic flights (44 records). A parameter of the instantaneous decartograms, namely the activation area (AA), which is the total area of the depolarization front projection on the image sphere, was analyzed. We compared the values of AA during the periods of horizontal flight, upward parts of all parabolas, and the initial 10 s of microgravity of all parabolas.
View Article and Find Full Text PDFChest wall mechanics was studied in four subjects on changing gravity in the craniocaudal direction (G(z)) during parabolic flights. The thorax appears very compliant at 0 G(z): its recoil changes only from -2 to 2 cmH(2)O in the volume range of 30-70% vital capacity (VC). Increasing G(z) from 0 to 1 and 1.
View Article and Find Full Text PDFAviat Space Environ Med
April 2001
Background/hypothesis: During parabolic flight, in the standing position, changes are partly due to an acute shift in fluid between the lower extremities, the head and the thorax (Vaïda P, et al. J Appl Physiol 1997; 82:1091-7; and Bailliart O, et al. J Appl Physiol 1998; 85:2100-5).
View Article and Find Full Text PDFVariations in gravity [head-to-foot acceleration (Gz)] induce hemodynamic alterations as a consequence of changes in hydrostatic pressure gradients. To estimate the contribution of the lower limbs to blood pooling or shifting during the different gravity phases of a parabolic flight, we measured instantaneous thigh and calf girths by using strain-gauge plethysmography in five healthy volunteers. From these circumferential measurements, segmental leg volumes were calculated at 1, 1.
View Article and Find Full Text PDFJ Appl Physiol (1985)
April 1997
Data from the Spacelab Life Sciences-1 (SLS-1) mission have shown sustained but moderate increase in pulmonary diffusing capacity (DL). Because of the occupational constraints of the mission, data were only obtained after 24 h of exposure to microgravity. Parabolic flights are often used to study some effects of microgravity, and we measured changes in DL occurring at the very onset of weightlessness.
View Article and Find Full Text PDFNO and CO lung transfer values (TL) were measured separately in 14 healthy subjects (7 men, 7 women), using the single breath technique. Five repetitive maneuvers were performed by each subject for TLNO and TLCO determinations. The inspired mixture contained either 8 ppm NO or 0.
View Article and Find Full Text PDF