Publications by authors named "Vaida C"

This study explores the experimental and theoretical optimization of process parameters to improve the quality of 3D-printed parts produced using the Fused Deposition Modeling technique. To ensure the cost-effective production of high-quality components, advancements in printing strategies are essential. This research identifies optimal 3D printing strategies to enhance the quality of finished products.

View Article and Find Full Text PDF

The association between psoriasis and increased cancer risk is gaining recognition as studies reveal shared inflammatory and immune pathways. This review examines the relationship between psoriasis and neoplasia, focusing on cancer risk factors in psoriasis patients, the biological pathways underlying this connection, and the impact of various psoriasis treatments on cancer development. Psoriasis patients have a heightened incidence of certain cancers, such as lymphomas, skin cancers, and urological malignancies, potentially linked to immune dysregulation and chronic inflammation.

View Article and Find Full Text PDF

Since laparoscopic surgery became the gold standard for colorectal procedures, specific skills are required to achieve good outcomes. The best way to acquire basic and advanced skills and reach the learning curve plateau is by using dedicated simulators: box-trainers, video-trainers and virtual reality simulators. Laparoscopic skills training outside the operating room is cost-beneficial, faster and safer, and does not harm the patient.

View Article and Find Full Text PDF

Recent advancements in dental implantology have significantly improved outcomes, with success rates of 90-95% over a 10-year period. Key improvements include enhanced preplanning processes, such as precise implant positioning, model selection, and optimal insertion depth. However, challenges remain, particularly in achieving correct spatial positioning and alignment of implants for optimal occlusion.

View Article and Find Full Text PDF

Introduction: Image-guided invasive procedures on the liver require a steep learning curve to acquire the necessary skills. The best and safest way to achieve these skills is through hands-on courses that include simulations and phantoms of different complications, without any risks for patients. There are many liver phantoms on the market made of various materials; however, there are few multimodal liver phantoms, and only two are cast in a 3D-printed mold.

View Article and Find Full Text PDF

: Patients with liver pathology benefit from image-guided interventions. Training for interventional procedures is recommended to be performed on liver phantoms until a basic proficiency is reached. In the last 40 years, several attempts have been made to develop materials to mimic the imaging characteristics of the human liver in order to create liver phantoms.

View Article and Find Full Text PDF

Robotic-assisted single-incision laparoscopic surgery (SILS) is becoming an increasingly widespread field worldwide due to the benefits it brings to both the patient and the surgeon. The goal of this study is to develop a secure robotic solution for SILS, focusing specifically on urology, by identifying and addressing various safety concerns from an early design stage. Starting with the medical tasks and protocols, the technical specifications of the robotic system as well as potential; hazards have been identified.

View Article and Find Full Text PDF

The Problem: Single-incision surgery is a complex procedure in which any additional information automatically collected from the operating field can be of significance. While the use of robotic devices has greatly improved surgical outcomes, there are still many unresolved issues. One of the major surgical complications, with higher occurrence in cancer patients, is intraoperative hemorrhages, which if detected early, can be more efficiently controlled.

View Article and Find Full Text PDF

In recent years, there has been an expansion in the development of simulators that use virtual reality (VR) as a learning tool. In surgery where robots are used, VR serves as a revolutionary technology to help medical doctors train in using these robotic systems and accumulate knowledge without risk. This article presents a study in which VR is used to create a simulator designed for robotically assisted single-uniport surgery.

View Article and Find Full Text PDF

The research aimed to evaluate the efficacy of the NeuroAssist, a parallel robotic system comprised of three robotic modules equipped with human-robot interaction capabilities, an internal sensor system for torque monitoring, and an external sensor system for real-time patient monitoring for the motor rehabilitation of the shoulder, elbow, and wrist. The study enrolled 10 consecutive patients with right upper limb paresis caused by stroke, traumatic spinal cord disease, or multiple sclerosis admitted to the Neurology I Department of Cluj-Napoca Emergency County Hospital. The patients were evaluated clinically and electrophysiologically before (T1) and after the intervention (T2).

View Article and Find Full Text PDF

This paper presents a study regarding the design and the experimental setup of a medical robotic system for brachytherapy using tribology analysis. The robotic system is composed of a collaborative robotic arm and a multi-needle brachytherapy instrument controlled using a unified control system embedding a haptic device and force-feedback. This work is oriented towards identifying the technical characteristics of the system components to determine the accuracy of the procedure, as well as using different scenarios for needle insertion in ex vivo porcine liver tissue in order to determine the forces required for insertion and extraction of the needle and the friction coefficient that accompanies the previously mentioned forces.

View Article and Find Full Text PDF

Background: SILS (single incision laparoscopic surgery) and NOTES (natural orifice transluminal endoscopic surgery) are considered breakthroughs in minimally invasive surgery, the first consisting in the surgeon working via a single entrance site and the second via a natural orifice (e.g., oral cavity).

View Article and Find Full Text PDF

Medical robotics is a highly challenging and rewarding field of research, especially in the development of minimally invasive solutions for the treatment of the worldwide leading cause of death, cancer. The aim of the paper is to provide a design methodology for the development of a safe and efficient medical robotic system for the minimally invasive, percutaneous, targeted treatment of hepatocellular carcinoma, which can be extended with minimal modification for other types of abdominal cancers. Using as input a set of general medical requirements to comply with currently applicable standards, and a set of identified hazards and failure modes, specific methods, such as the Analytical Hierarchy Prioritization, Risk Analysis and fuzzy logic Failure Modes and Effect Analysis have been used within a stepwise approach to help in the development of a medical device targeting the insertion of multiple needles in brachytherapy procedures.

View Article and Find Full Text PDF

The use of robotic systems in physical rehabilitation protocols has become increasingly attractive and has been given more focus in the last decade as a result of the high prevalence of motor deficits in the population, which is linked to an overburdened healthcare system. In accordance with current trends, three robotic devices have been designed, called ParReEx Elbow, ParReEx Wrist, and ASPIRE, which were designed to improve upper-limb medical recovery (shoulder, elbow, forearm, and wrist). The three automated systems were tested in a hospital setting with 23 patients (12 men and 11 women) suffering from motor deficits caused by various neurological diseases such as stroke, Parkinson's disease, and amyotrophic lateral sclerosis (ALS).

View Article and Find Full Text PDF

The paper presents the design optimization of the ASPIRE spherical parallel robot for shoulder rehabilitation following clinical evaluation and clinicians' feedback. After the development of the robotic structure and the implementation of the control system, ASPIRE was prepared for clinical evaluation. A set of clinical trials was performed on 24 patients with different neurological disorders to obtain the patient and clinician acceptance of the rehabilitation system.

View Article and Find Full Text PDF

Motor disability is a key feature of many neurological diseases, influencing the social roles of affected patients and their ability to perform daily life activities. Current rehabilitation capacities are overwhelmed by the age-related increase of motor dysfunctions seen, for example, in stroke, extrapyramidal or neuromuscular diseases. As the patient to rehabilitation personnel ration increases, robotic solutions might establish the possibility to rapidly satisfy the increasing demand for rehabilitation.

View Article and Find Full Text PDF

A few decades ago, robotics started to be implemented in the medical field, especially in the rehabilitation of patients with different neurological diseases that have led to neuromuscular disorders. The main concern regarding medical robots is their safety assurance in the medical environment. The goal of this paper is to assess the risk of a medical robotic system for elbow and wrist rehabilitation in terms of robot and patient safety.

View Article and Find Full Text PDF
Article Synopsis
  • The growth of laparoscopic surgery has highlighted the need for specialized training methods to develop essential technical skills.
  • An innovative e-learning platform has been created to facilitate training in laparoscopic liver surgery, enabling remote simulation of surgical procedures.
  • The platform targets both young surgeons focusing on laparoscopic liver surgery and experienced surgeons seeking to enhance their skills in minimally invasive techniques.
View Article and Find Full Text PDF
Article Synopsis
  • The PARASURG 9M is a Romanian-designed parallel hybrid robot for robot-assisted surgery, featuring a positioning module with five degrees of freedom and an active instrument for surgical tasks.
  • Its low-cost experimental model is part of the PARAMIS system, utilizing multiple control interfaces like joystick and haptic devices for easy manipulation during procedures.
  • The robot enhances minimally invasive surgery by improving precision, reducing fatigue for surgeons, and allowing for greater dexterity and ergonomic benefits during operations.
View Article and Find Full Text PDF

The paper presents the parallel robot, which has been developed in Romania and it is used for laparoscope camera positioning. Based on its mathematical modeling, the first low-cost experimental model of the PARAMIS surgical robot has been built. The system has been built in such a way that it has the possibility to transform it in a multiarm robot controlled from the console.

View Article and Find Full Text PDF

Microparticle drug carriers made of biodegradable functional polyesters were produced. The polyesters consist of a poly(ε-caprolactone) backbone bearing pendant acryloyloxy and methacryloyloxy groups. Stable microparticles were prepared via an oil/water emulsion-solvent evaporation technique eventually combined with a simultaneous crosslinking procedure.

View Article and Find Full Text PDF

The Purpose: Of our study is to assess the gravity of cyanide intoxication of children, in the ecological accident in January 2001.

Material And Methods: We included in our study 127 children aged between 2 months and 17 years. They were hospitalized in January and February 2001, in the "Sf.

View Article and Find Full Text PDF

Regular consumers of caffeine had higher muscle tension after three or more hours of abstinence than low caffeine consumers. This difference was absent after double-blind administration of caffeine citrate or placebo. In a discriminative reaction time test, caffeine treatment improved performance.

View Article and Find Full Text PDF