We present a simple and cost-effective method for the fabrication of antireflective surfaces by self-assembly of block copolymers and subsequent plasma etching. The block copolymers create randomly oriented periodic patterns, which are further transferred into fused silica substrates. The reflection on the patterned fused silica surface is reduced to well below 1% in the ultraviolet, visible, and near-infrared ranges by exploiting subwavelength nanostructures with periodicities down to 48 nm.
View Article and Find Full Text PDFThis work explores the alternative use of noble metal nanowire systems in large-scale array configurations to exploit both the nanowires' conductive nature and localized surface plasmon resonance (LSPR). The first known nanowire-based system has been constructed, with which optical signals are influenced by the simultaneous application of electrochemical potentials. Optical characterization of nanowire arrays was performed by measuring the bulk refractive index sensitivity and the limit of detection.
View Article and Find Full Text PDF