Hyperandrogenism and polycystic ovarian syndrome result from the imbalance or increase of androgen levels in females. Androgen receptor (AR) mediates the effects of androgens, and this study examines whether neuronal AR plays a role in reproduction under normal and increased androgen conditions in female mice. The neuron-specific AR knockout (KO) mouse (SynARKO) was generated from a female mouse (synapsin promoter driven Cre) and a male mouse (Ar fl/y).
View Article and Find Full Text PDFHyperandrogenemia and polycystic ovary syndrome are a result of the imbalance of androgen levels in females. Androgen receptor (Ar) mediates the effect of androgen, and this study examines how neuronal Ar in the central nervous system mediates metabolism under normal and increased androgen conditions in female mice. The neuron-specific ARKO mouse (SynARKO) was created from female (Ar fl/wt; synapsin promoter driven Cre) and male (Ar fl/y) mice.
View Article and Find Full Text PDFWe investigated the role of protein kinase c (PKC) -α and -β during the ovarian follicular dynamics using estrous cycle, gonadotropin-induced ovulation, and antral follicle culture, 4-vinylcyclohexene diepoxide (VCD)-induced premature ovarian failure (POF) in the SD rat models. We found the higher activity of PKC during the proestrus stage along with expression of PKC-α during the estrus and metestrus stages of the estrous cycle while PKC-β expression was increased during the diestrus, proestrus, and estrus stages. In response to pregnant mare gonadotropin (PMSG)-induced follicular recruitment and ovulation, the phosphorylated (Thr-642) PKC-β was increased.
View Article and Find Full Text PDFObesity, altered glucose homeostasis, hyperinsulinism, and reproductive dysfunction develops in female humans and mammals with hyperandrogenism. We previously reported that low dose dihydrotestosterone (DHT) administration results in metabolic and reproductive dysfunction in the absence of obesity in female mice, and conditional knock-out of the androgen receptor (Ar) in the liver (LivARKO) protects female mice from DHT-induced glucose intolerance and hyperinsulinemia. Since altered metabolic function will regulate reproduction, and liver plays a pivotal role in the reversible regulation of reproductive function, we sought to determine the reproductive phenotype of LivARKO mice under normal and hyperandrogenemic conditions.
View Article and Find Full Text PDFPolycystic ovary syndrome (PCOS) is a unification of endocrine and metabolic disorders and has become immensely prevalent among women of fertile age. The prime organ affected in PCOS is the ovary and its distressed functioning elicits disturbed reproductive outcomes. In the ovary, macroautophagy/autophagy performs a pivotal role in directing the chain of events starting from oocytes origin until its fertilization.
View Article and Find Full Text PDFEndometriosis is a prevalent gynecological disorder that eventually gives rise to painful invasive lesions. Increased levels of transforming growth factor-beta 1 (TGF-B1) have been reported in endometriosis. However, details of the effects of high TGF-B1 on downstream signaling in ectopic endometrial tissue remain obscure.
View Article and Find Full Text PDFThe function of RHOG, a RAC1 activator, was explored in the ovary during ovarian follicular development and pathological conditions. With the help of immunoblotting and immunolocalization, we determined the expression and localization of RHOG in normal (estrous cycle) and polycystic ovaries using Sprague Dawley (SD) rat model. Employing polymerase chain reaction and flow cytometry, we analyzed the transcript and expression levels of downstream molecules of RHOG, DOCK1, and RAC1 in the polycystic ovarian syndrome (PCOS) ovary along with normal antral follicular theca and granulosa cells after dehydroepiandrosterone (DHEA) supplementation.
View Article and Find Full Text PDF