Electromagnetically propelled helical nanoswimmers offer great potential for nanorobotic applications. Here, the effect of confinement on their propulsion is characterized using lattice-Boltzmann simulations. Two principal mechanisms give rise to their forward motion under confinement: (i) pure swimming and (ii) the thrust created by the differential pressure due to confinement.
View Article and Find Full Text PDFPolarization-dependent scattering anisotropy of cylindrical nanowires has numerous potential applications in, for example, nanoantennas, photothermal therapy, thermophotovoltaics, catalysis, sensing, optical filters and switches. In all these applications, temperature-dependent material properties play an important role and often adversely impact performance depending on the dominance of either radiative or dissipative damping. Here, we employ numerical modeling based on Mie scattering theory to investigate and compare the temperature and polarization-dependent optical anisotropy of metallic (gold, Au) nanowires with indirect (silicon, Si) and direct (gallium arsenide, GaAs) bandgap semiconducting nanowires.
View Article and Find Full Text PDFIncreased reflectance from the inclusion of highly scattering particles at low volume fractions in an insulating dielectric offers a promising way to reduce radiative thermal losses at high temperatures. Here, we investigate plasmonic resonance driven enhanced scattering from microinclusions of low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating composite to tailor its infrared reflectance for minimizing thermal losses from radiative transfer. To this end, we compute the spectral properties of the microcomposites using Monte Carlo modeling and compare them with results from Fresnel equations.
View Article and Find Full Text PDFControlling the motion of nano and microscale objects in a fluid environment is a key factor in designing optimized tiny machines that perform mechanical tasks such as transport of drugs or genetic material in cells, fluid mixing to accelerate chemical reactions, and cargo transport in microfluidic chips. Directed motion is made possible by the coupled translational and rotational motion of asymmetric particles. A current challenge in achieving directed and controlled motion at the nanoscale lies in overcoming random Brownian motion due to thermal fluctuations in the fluid.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2015
Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm.
View Article and Find Full Text PDFApplications of non-invasive neuroelectronic interfacing in the fields of whole-cell biosensing, biological computation and neural prosthetic devices depend critically on an efficient decoding and processing of information retrieved from a neuron-electrode junction. This necessitates development of mathematical models of the neuron-electrode interface that realistically represent the extracellular signals recorded at the neuroelectronic junction without being computationally expensive. Extracellular signals recorded using planar microelectrode or field effect transistor arrays have, until now, primarily been represented using linear equivalent circuit models that fail to reproduce the correct amplitude and shape of the signals recorded at the neuron-microelectrode interface.
View Article and Find Full Text PDF