A hybrid exoskeleton that combines functional electrical stimulation (FES) and a powered exoskeleton is an emerging technology for assisting people with mobility disorders. The cooperative use of FES and the exoskeleton allows active muscle contractions via FES while robustifying torque generation to reduce FES-induced muscle fatigue. In this paper, a switched distribution of allocation ratios between FES and electric motors in a closed-loop adaptive control design is explored for the first time.
View Article and Find Full Text PDFProc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron
August 2022
Strength and selective motor control are primary determinants of pathological gait in children with cerebral palsy (CP) and other neuromotor disorders. Emerging evidence suggests robotic application of task-specific resistance to functional movements may provide the opportunity to strengthen muscles and improve neuromuscular function during walking in children with CP. Such a strategy could be most beneficial to children who are more severely affected by the pathology but their ability to overcome such resistance and maintain functional ambulation remains unclear.
View Article and Find Full Text PDFA hybrid exoskeleton comprising a powered exoskeleton and functional electrical stimulation (FES) is a promising technology for restoration of standing and walking functions after a neurological injury. Its shared control remains challenging due to the need to optimally distribute joint torques among FES and the powered exoskeleton while compensating for the FES-induced muscle fatigue and ensuring performance despite highly nonlinear and uncertain skeletal muscle behavior. This study develops a bi-level hierarchical control design for shared control of a powered exoskeleton and FES to overcome these challenges.
View Article and Find Full Text PDFCurrently controllers that dynamically modulate functional electrical stimulation (FES) and a powered exoskeleton at the same time during standing-up movements are largely unavailable. In this paper, an optimal shared control of FES and a powered exoskeleton is designed to perform sitting to standing (STS) movements with a hybrid exoskeleton. A hierarchical control design is proposed to overcome the difficulties associated with developing an optimal real-time solution for the highly nonlinear and uncertain STS control model with multiple degrees of freedom.
View Article and Find Full Text PDFA hybrid walking neuroprosthesis that combines functional electrical stimulation (FES) with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton.
View Article and Find Full Text PDF