Iran J Pharm Res
January 2021
Nowadays, mesenchymal stem cells (MSCs) are the most widely used cell sources for bone regenerative medicine. Electrospun polyacrylonitrile (PAN)-based scaffolds play an important role in bone tissue engineering due to their good mechanical properties, which could be enhanced by the presence of nanoparticles such as nanoclay. This study evaluated the effect of different concentrations of nanoclay in surface characteristic properties of PAN-based electrospun nanofiber scaffolds and the osteogenic differentiation ability of adipose-derived mesenchymal stem cells (AD-MSCs).
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
November 2016
Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are non-hematopoietic, multipotent progenitor cells which reside in bone marrow (BM), support homing of hematopoietic stem cells (HSCs) and self-renewal in the BM. These cells have the potential to differentiate into tissues of mesenchymal origin, such as fibroblasts, adipocytes, cardiomyocytes, and stromal cells. MSCs can express surface molecules like CD13, CD29, CD44, CD73, CD90, CD166, CXCL12 and toll-like receptors (TLRs).
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
October 2016
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death among women worldwide. Herbal medicines have tremendous potential as promising agents for the treatment of cancer. Curcumin is a natural polyphenol which has many anticancer effects.
View Article and Find Full Text PDFPoly (lactic-co-glycolic acid) (PLGA) is one of the most effective biodegradable polymeric nanoparticles (NPs). It has been approved by the US FDA to use in drug delivery systems due to controlled and sustained- release properties, low toxicity, and biocompatibility with tissue and cells. In the present review, the structure and properties of PLGA copolymers synthesized by ring-opening polymerization of DL-lactide and glicolide were characterized using 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy and differential scanning calorimetry.
View Article and Find Full Text PDF