Purpose: Patient-specific simulations of transcatheter aortic valve (TAV) using computational fluid dynamics (CFD) often rely on assumptions regarding proximal and distal anatomy due to the limited availability of high-resolution imaging away from the TAV site and the primary research focus being near the TAV. However, the influence of these anatomical assumptions on computational efficiency and resulting flow characteristics remains uncertain. This study aimed to investigate the impact of different distal aortic arch anatomies-some of them commonly used in literature-on flow and hemodynamics in the vicinity of the TAV using large eddy simulations (LES).
View Article and Find Full Text PDFBackground: Leaflet thrombosis after surgical aortic valve replacement (SAVR) and transcatheter aortic valve replacement (TAVR) may be caused by blood flow stagnation in the native and neosinus regions. To date, aortic leaflet laceration has been used to mitigate coronary obstruction following TAVR; however, its influence on the fluid mechanics of the native and neosinus regions is poorly understood. This in vitro study compared the flow velocities and flow patterns in the setting of SAVR vs TAVR with and without aortic leaflet lacerations.
View Article and Find Full Text PDFPurpose: Leaflet thrombosis is a potentially fatal complication after transcatheter aortic valve replacement (TAVR). Blood flow stagnation in the neo-sinus and aortic sinuses are associated with increased thrombus severity. Native aortic leaflet modification may be a potential strategy to improve the neo-sinus and aortic sinus fluid dynamics.
View Article and Find Full Text PDFBackground: This study assessed the long-term hemodynamic functional performance of the new Inspiris Resilia aortic valve after accelerated wear testing (AWT).
Methods: Three 21-mm and 23-mm Inspiris valves were used for the AWT procedure. After 1 billion cycles (equivalent to 25 years), the valves' hemodynamic performance was compared with that of the corresponding zero-cycled condition.
Background: A clinical study comparing the hemodynamic outcomes of transcatheter mitral valve replacement (TMVR) with vs. without Laceration of the Anterior Mitral leaflet to Prevent Outflow Obstruction (LAMPOON) has never been designed nor conducted.
Aims: To quantify the hemodynamic impact of LAMPOON in TMVR using patient-specific computational () models.
Purpose: This study examined changes in force distribution between the neochordae corresponding to different ventricular anchor locations.
Description: Seven porcine mitral valves were mounted in a left heart simulator. Neochordae (expanded polytetrafluoroethylene) originated from either a simulated left ventricular apex, papillary muscle base, or papillary muscle tip location.
Aims: To characterize the dynamic nature of the left ventricular outflow tract (LVOT) geometry and flow rate in patients following transcatheter mitral valve replacement (TMVR) with anterior leaflet laceration (LAMPOON) and derive insights to help guide future patient selection.
Methods And Results: Time-resolved LVOT geometry and haemodynamics were analysed with post-procedure computed tomography and echocardiography in subjects (N = 19) from the LAMPOON investigational device exemption trial. A novel post hoc definition for LVOT obstruction was employed to account for systolic flow rate and quality of life improvement [obstruction was defined as LVOT gradient >30 mmHg or LVOT effective orifice area (EOA) ≤1.
In silico modeling has been proposed as a tool to simulate left ventricular (LV) outflow tract (LVOT) obstruction in patients undergoing transcatheter mitral valve replacement (TMVR). This study validated a simplified approach to simulate LV outflow hemodynamics in the setting of TMVR with anterior leaflet laceration, a clinical technique used to mitigate the risk of LVOT obstruction. Personalized, 3-dimensional computational fluid dynamics models were developed from computed tomography images of six patients who underwent TMVR with anterior leaflet laceration.
View Article and Find Full Text PDFJ Thorac Cardiovasc Surg
September 2022
Objective: With the recent expanded indication for transcatheter aortic valve replacement to low-risk surgical patients, thrombus formation in the neosinus is of particular interest due to concerns of reduced leaflet motion and long-term transcatheter heart valve durability. Although flow stasis likely plays a role, a direct connection between neosinus flow stasis and thrombus severity is yet to be established.
Methods: Patients (n = 23) were selected to minimize potential confounding factors related to thrombus formation.
Cardiovasc Eng Technol
February 2021
Purpose: The initiation of thrombus formation in transcatheter aortic valves (TAVs) is not well understood. The foreign material components of a TAV may play a key role in TAV thrombogenesis. The goal of this study was to evaluate the thrombogenic potential of a TAV (entire valve) and its stent (with skirt).
View Article and Find Full Text PDFTranscatheter aortic valve (TAV) leaflet thrombosis is a clinical risk with potentially fatal consequences. Studies have identified neo-sinus flow stasis as a cause of leaflet thrombosis. Flow stasis is influenced by the TAV leaflets, which affect the local fluid dynamics in the aortic sinus and neo-sinus.
View Article and Find Full Text PDFThrombosis in post-transcatheter aortic valve replacement (TAVR) patients has been correlated with flow stasis in the neo-sinus. This study investigated the effect of the post-TAVR geometry on flow stasis. Computed tomography angiography of 155 patients who underwent TAVR using a SAPIEN 3 were used to identify patients with and without thrombosis, and quantify thrombus volumes.
View Article and Find Full Text PDFBackground: This study examined whether the presence of a sinus of Valsalva equivalent in the KONECT RESILIA aortic valved conduit (Edwards Lifesciences, Irvine, Calif) improves valve hemodynamics, kinematics, and performance.
Methods: A 28-mm KONECT RESILIA aortic valved conduit was used to create an in vitro flow test model, and the same aortic valved conduit model without a sinus section was used as a control. Particle image velocimetry and hydrodynamic characterization experiments were conducted in the vicinity of the valves in a validated left-heart simulator at 3 cardiac output levels.
Transcatheter heart valve (THV) leaflet thrombosis in the neo-sinus and associated reduced leaflet motion is of clinical concern due to risks of embolism and worsened valve hemodynamics. Flow stasis in the neo-sinus (the space between the native and THV leaflets) is a known risk factor, but the role of proximal coronary flow is yet to be investigated. We tested two replicas of FDA approved commercial THVs-intra-annular and supra-annular (similar to the SAPIEN 3 and CoreValve families)-in a left heart simulator with coronary flow.
View Article and Find Full Text PDFObjectives: We investigated the impact of (transcatheter heart valve) THV expansion at the level of the native annulus and implant depth on valve performance and neo-sinus flow stasis.
Background: Flow stasis in the neo-sinus is one of the identified risk factors of THV thrombosis.
Methods: A 29 mm CoreValve and 26 mm SAPIEN 3 were deployed under different expansions (CoreValve, SAPIEN 3) and implant depths (CoreValve) within a patient-derived aortic root in a pulse duplicator.
Objective: Rapid deployment surgical aortic valve replacement has emerged as an alternative to the contemporary sutured valve technique. A difference in transvalvular pressure has been observed clinically between RD-SAVR and contemporary SAVR. A mechanistic inquiry into the impact of the rapid deployment valve inflow frame design on the left ventricular outflow tract and valve hemodynamics is needed.
View Article and Find Full Text PDFComputational modeling can be used to improve understanding of tricuspid valve (TV) biomechanics and supplement knowledge gained from benchtop and large animal experiments. The aim of this study was to develop a computational model of the TV using high resolution micro-computed tomography (μCT) imaging and fluid-structure interaction simulations. A three-dimensional TV model, incorporating detailed leaflet and chordal geometries, was reconstructed from μCT images of an excised porcine TV obtained under diastolic conditions.
View Article and Find Full Text PDFTranscatheter mitral valve (TMV) replacement technology has great clinical potential for surgically inoperable patients suffering from mitral regurgitation. An important goal for robust TMV design is maximizing the likelihood of achieving a geometry post-implant that facilitates optimal performance. To support this goal, improved understanding of the annular forces that oppose TMV radial expansion is necessary.
View Article and Find Full Text PDFWhile transcatheter mitral valve (TMV) replacement technology has great clinical potential for surgically inoperable patients suffering from mitral regurgitation, no TMV has yet achieved regulatory approval. The diversity of devices currently under development reflects a lack of consensus regarding optimal design approaches. In Part I of this two-part study, a test system was developed for the quantification of paravalvular leakage (PVL) following deployment of a TMV or TMV-like device in pressurized, explanted porcine hearts (N = 7).
View Article and Find Full Text PDF