The current study presents the effect of the backbone as an important binder component on the mechanical, rheological, and thermal properties of Aluminium (Al) alloy feedstocks. A thermoplastic elastomer (TPE) main binder component was blended with either polypropylene (PP), grafted-maleic anhydride-PP (PPMA), or grafted-maleic anhydride-PPwax (PPMAwax) plus PP, as the backbone. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) tests were performed to investigate the thermal properties of binder systems and feedstocks.
View Article and Find Full Text PDFPowder injection molding (PIM) is a well-known technique to manufacture net-shaped, complicated, macro or micro parts employing a wide range of materials and alloys. Depending on the pressure applied to inject the feedstock, this process can be separated into low-pressure (LPIM) and high-pressure (HPIM) injection molding. Although the LPIM and HPIM processes are theoretically similar, all steps have substantial differences, particularly feedstock preparation, injection, and debinding.
View Article and Find Full Text PDFThe good interaction between the ceramic powder and the binder system is vital for ceramic injection molding and prevents the phase separation during processing. Due to the non-polar structure of polyolefins such as high-density polyethylene (HDPE) and the polar surface of ceramics such as zirconia, there is not appropriate adhesion between them. In this study, the effect of adding high-density polyethylene grafted with acrylic acid (AAHDPE), with high polarity and strong adhesion to the powder, on the rheological, thermal and chemical properties of polymer composites highly filled with zirconia and feedstocks was evaluated.
View Article and Find Full Text PDF