Oxidative stress and cytosolic Ca(2+) overload have important roles on apoptosis in dorsal root ganglion (DRG) neurons after spinal cord injury (SCI). Hypericum perforatum (HP) has an antioxidant property in the DRGs due to its ability to modulate NADPH oxidase and protein kinase C pathways. We aimed to investigate the protective property of HP on oxidative stress, apoptosis, and Ca(2+) entry through transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels in SCI-induced DRG neurons of rats.
View Article and Find Full Text PDFElectromagnetic radiation (EMR) and epilepsy are reported to mediate the regulation of apoptosis and oxidative stress through Ca(2+) influx. Results of recent reports indicated that EMR can increase temperature and oxidative stress of body cells, and TRPV1 channel is activated by noxious heat, oxidative stress, and capsaicin (CAP). We investigated the effects of mobile phone (900 MHz) EMR exposure on Ca(2+) influx, apoptosis, oxidative stress, and TRPV1 channel activations in the hippocampus of pentylenetetrazol (PTZ)-induced epileptic rats.
View Article and Find Full Text PDFNeurodegeneration associated with acute central nervous system injuries and diseases such as spinal cord injury and traumatic brain injury (TBI) are reported to be mediated by the regulation of apoptosis and oxidative stress through Ca(2+) influx. The thiol redox system antioxidants, such as N-acetylcysteine (NAC) and selenium (Se), display neuroprotective activities mediated at least in part by their antioxidant and anti-inflammatory properties. However, there are no reports on hippocampal apoptosis, cytosolic reactive oxygen species (ROS), or Ca(2+) values in rats with an induced TBI.
View Article and Find Full Text PDFIncidence rates of epilepsy and use of Wi-Fi worldwide have been increasing. TRPV1 is a Ca(2+) permeable and non-selective channel, gated by noxious heat, oxidative stress and capsaicin (CAP). The hyperthermia and oxidant effects of Wi-Fi may induce apoptosis and Ca(2+) entry through activation of TRPV1 channel in epilepsy.
View Article and Find Full Text PDFAim: The aim of this study was to examine the effects of desmopressin on morphine withdrawal symptoms and vasopressin level in morphine-dependent subjects.
Methods: Wistar male rats were injected s.c.