One-class modelling is a useful approach in metabolomics for the untargeted detection of abnormal metabolite profiles, when information from a set of reference observations is available to model "normal" or baseline metabolite profiles. Such outlying profiles are typically identified by comparing the distance between an observation and the reference class to a critical limit. Often, multivariate distance measures such as the Mahalanobis distance (MD) or principal component-based measures are used.
View Article and Find Full Text PDFAfter variable selection, standard inferential procedures for regression parameters may not be uniformly valid; there is no finite-sample size at which a standard test is guaranteed to approximately attain its nominal size. This problem is exacerbated in high-dimensional settings, where variable selection becomes unavoidable. This has prompted a flurry of activity in developing uniformly valid hypothesis tests for a low-dimensional regression parameter (eg, the causal effect of an exposure A on an outcome Y) in high-dimensional models.
View Article and Find Full Text PDF