Heart failure (HF) is a conundrum in that, current therapies only slow the progression of the disease. We posit, if the causal mechanism were targeted, progression of the disease could be stopped and potentially reversed. We hypothesize that insufficient myocardial blood flow (MBF) produces minute areas of ischemia, that lead to an accumulating injury culminating in HF.
View Article and Find Full Text PDFUnderstanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients.
View Article and Find Full Text PDFBackground: Left ventricular hypertrophy is a bipolar response, starting as an adaptive response to the hemodynamic challenge, but over time develops maladaptive pathology partly due to microvascular rarefaction and impaired coronary angiogenesis. Despite the profound influence on cardiac function, the mechanotransduction mechanisms that regulate coronary angiogenesis, leading to heart failure, are not well known.
Methods: We subjected endothelial-specific knockout mice of mechanically activated ion channel, TRPV4 (transient receptor potential cation channel subfamily V member 4; TRPV4) to pressure overload via transverse aortic constriction and examined cardiac function, cardiomyocyte hypertrophy, cardiac fibrosis, and apoptosis.
Accumulating evidence highlights protein O-GlcNAcylation as a putative pathogenic contributor of diabetic vascular complications. We previously reported that elevated protein O-GlcNAcylation correlates with increased atherosclerotic lesion formation and VSMC proliferation in response to hyperglycemia. However, the role of O-GlcNAc transferase (OGT), regulator of O-GlcNAc signaling, in the evolution of diabetic atherosclerosis remains elusive.
View Article and Find Full Text PDFBackground And Aims: Takotsubo syndrome (TTS) is a conundrum without consensus about the cause. In a murine model of coronary microvascular dysfunction (CMD), abnormalities in myocardial perfusion played a key role in the development of TTS.
Methods And Results: Vascular Kv1.
Many clinical trials have attempted to use stem cells to treat ischemic heart diseases (IHD), but the benefits have been modest. Though coronary collaterals can be a "natural bypass" for IHD patients, the regulation of coronary collateral growth (CCG) and the role of endogenous stem cells in CCG are not fully understood. In this study, we used a bone marrow transplantation scheme to study the role of bone marrow stem cells (BMSCs) in a rat model of CCG.
View Article and Find Full Text PDFFront Cardiovasc Med
September 2022
Background: CXCL12/CXCR4 signaling is essential in cardiac development and repair, however, its contribution to aortic valve stenosis (AVS) remains unclear. In this study, we tested the role of endothelial CXCR4 on the development of AVS.
Materials And Methods: We generated CXCR4 endothelial cell-specific knockout mice (EC CXCR4 KO) by crossing CXCR4 mice with Tie2-Cre mice to study the role of endothelial cell CXCR4 in AVS.
Adequate oxygen delivery to the heart during stress is essential for sustaining cardiac function. Acute increases in myocardial oxygen demand evoke coronary vasodilation and enhance perfusion via functional upregulation of smooth muscle voltage-gated K (Kv) channels. Because this response is controlled by Kv1 accessory subunits (i.
View Article and Find Full Text PDFRationale: Coronary collateral growth is a natural bypass for ischemic heart diseases. It offers tremendous therapeutic benefit, but the process of coronary collateral growth isincompletely understood due to limited preclinical murine models that would enable interrogation of its mechanisms and processes via genetic modification and lineage tracing. Understanding the processes by which coronary collaterals develop can unlock new therapeutic strategies for ischemic heart disease.
View Article and Find Full Text PDFEndothelial dysfunction in diabetes is generally attributed to oxidative stress, but this view is challenged by observations showing antioxidants do not eliminate diabetic vasculopathy. As an alternative to oxidative stress-induced dysfunction, we interrogated if impaired mitochondrial function in endothelial cells is central to endothelial dysfunction in the metabolic syndrome. We observed reduced coronary arteriolar vasodilation to the endothelium-dependent dilator, acetylcholine (Ach), in Zucker Obese Fatty rats (ZOF, 34 ± 15% [mean ± standard deviation] 10 M) compared to Zucker Lean rats (ZLN, 98 ± 11%).
View Article and Find Full Text PDFCoronary microvascular dysfunction is prevalent among people with diabetes and is correlated with cardiac mortality. Compromised endothelial-dependent dilation (EDD) is an early event in the progression of diabetes, but its mechanisms remain incompletely understood. Nitric oxide (NO) is the major endothelium-dependent vasodilatory metabolite in the healthy coronary circulation, but this switches to hydrogen peroxide (HO) in coronary artery disease (CAD) patients.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2021
Objective: Hyperleptinemia, hallmark of obesity, is a putative pathophysiologic trigger for atherosclerosis. We previously reported a stimulatory effect of leptin on TSP-1 (thrombospondin-1) expression, a proatherogenic matricellular protein implicated in atherogenesis. However, a causal role of TSP-1 in leptin-driven atherosclerosis remains unknown.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
March 2020
Coronary microvascular dysfunction (CMD) is commonly present in patients with metabolic derangements and is increasingly recognized as an important contributor to myocardial ischaemia, both in the presence and absence of epicardial coronary atherosclerosis. The latter condition is termed 'ischaemia and no obstructive coronary artery disease' (INOCA). Notwithstanding the high prevalence of INOCA, effective treatment remains elusive.
View Article and Find Full Text PDFSmooth muscle voltage-gated potassium (Kv) channels are important regulators of microvascular tone and tissue perfusion. Recent studies indicate that Kv1 channels represent a key component of the physiological coupling between coronary blood flow and myocardial oxygen demand. While the mechanisms by which metabolic changes in the heart are transduced to alter coronary Kv1 channel gating and promote vasodilation are unclear, a growing body of evidence underscores a pivotal role of Kv1 channels in sensing the cellular redox status.
View Article and Find Full Text PDFIschemic heart disease is still the leading cause of death even with the advancement of pharmaceutical therapies and surgical procedures. Early vascularization in the ischemic heart is critical for a better outcome. Although stem cell therapy has great potential for cardiovascular regeneration, the ideal cell type and delivery method of cells have not been resolved.
View Article and Find Full Text PDFThe connection between metabolism and flow in the heart, metabolic dilation, is essential for cardiac function. We recently found redox-sensitive Kv1.5 channels play a role in coronary metabolic dilation; however, more than one ion channel likely plays a role in this process as animals null for these channels still showed limited coronary metabolic dilation.
View Article and Find Full Text PDFIncreasing evidence suggests thrombospondin-1 (TSP-1), a potent proatherogenic matricellular protein, as a putative link between hyperglycemia and atherosclerotic complications in diabetes. We previously reported that the micronutrient chromium picolinate (CrP), with long-standing cardiovascular benefits, inhibits TSP-1 expression in glucose-stimulated human aortic smooth muscle cells in vitro. Here, we investigated the atheroprotective action of orally administered CrP in type 1 diabetic apolipoprotein E-deficient (ApoE) mice and elucidated the role of TSP-1 in this process.
View Article and Find Full Text PDFMitochondrial dysfunction in obesity and diabetes can be caused by excessive production of free radicals, which can damage mitochondrial DNA. Because mitochondrial DNA plays a key role in the production of ATP necessary for cardiac work, we hypothesized that mitochondrial dysfunction, induced by mitochondrial DNA damage, uncouples coronary blood flow from cardiac work. Myocardial blood flow (contrast echocardiography) was measured in Zucker lean (ZLN) and obese fatty (ZOF) rats during increased cardiac metabolism (product of heart rate and arterial pressure, i.
View Article and Find Full Text PDFDuring heightened cardiac work, O2 consumption by the heart benefits energy production via mitochondria. However, some electrons leak from the respiratory chain and yield superoxide, which is rapidly metabolized into H2O2 by SOD2. To understand the systemic effects of the metabolic dilator, H2O2, we studied mice with cardiac-specific SOD2 overexpression (SOD2-tg), which increases the H2O2 produced by cardiac mitochondria.
View Article and Find Full Text PDF