Optical coupling between propagating light and confined surface polaritons plays a pivotal role in the practical design of nanophotonic devices. However, the coupling efficiency decreases dramatically with the degree of mode confinement due to the mismatch that exists between the light and polariton wavelengths, and despite the intense efforts made to explore different mechanisms proposed to circumvent this problem, the realization of a flexible scheme to efficiently couple light to polaritons remains a challenge. Here, we experimentally demonstrate an efficient coupling of light to surface-plasmon polaritons assisted by engineered dipolar scatterers placed at an optimum distance from the surface.
View Article and Find Full Text PDFThe ability to confine light down to atomic scales is critical for the development of applications in optoelectronics and optical sensing as well as for the exploration of nanoscale quantum phenomena. Plasmons in metallic nanostructures with just a few atomic layers in thickness can achieve this type of confinement, although fabrication imperfections down to the subnanometer scale hinder actual developments. Here, narrow plasmons are demonstrated in atomically thin crystalline silver nanostructures fabricated by prepatterning silicon substrates and epitaxially depositing silver films of just a few atomic layers in thickness.
View Article and Find Full Text PDFMultilayer films with continuously varying indices for each layer have attracted great deal of attention due to their superior optical, mechanical, and thermal properties. However, difficulties in fabrication have limited their application and study in scientific literature compared to multilayer films with fixed index layers. In this work we propose a neural network based inverse design technique enabled by a differentiable analytical solver for realistic design and fabrication of single material variable-index multilayer films.
View Article and Find Full Text PDFWhispering-gallery mode resonators host multiple trapped narrow-band circulating optical resonances that find applications in quantum electrodynamics, optomechanics, and sensing. However, the spherical symmetry and low field leakage of dielectric microspheres make it difficult to probe their high-quality optical modes using far-field radiation. Even so, local field enhancement from metallic nanoparticles (MNPs) coupled to the resonators can interface the optical far field and the bounded cavity modes.
View Article and Find Full Text PDFSilver, king among plasmonic materials, features low inelastic absorption in the visible-infrared (vis-IR) spectral region compared to other metals. In contrast, copper is commonly regarded as too lossy for actual applications. Here, we demonstrate vis-IR plasmons with quality factors >60 in long copper nanowires (NWs), as determined by electron energy-loss spectroscopy.
View Article and Find Full Text PDFAtomic vibrations and phonons are an excellent source of information on nanomaterials that we can access through a variety of methods including Raman scattering, infrared spectroscopy, and electron energy-loss spectroscopy (EELS). In the presence of a plasmon local field, vibrations are strongly modified and, in particular, their dipolar strengths are highly enhanced, thus rendering Raman scattering and infrared spectroscopy extremely sensitive techniques. Here, we experimentally demonstrate that the interaction between a relativistic electron and vibrational modes in nanostructures is fundamentally modified in the presence of plasmons.
View Article and Find Full Text PDFLight-matter interaction at the atomic scale rules fundamental phenomena such as photoemission and lasing while enabling basic everyday technologies, including photovoltaics and optical communications. In this context, plasmons, the collective electron oscillations in conducting materials, are important because they allow the manipulation of optical fields at the nanoscale. The advent of graphene and other two-dimensional crystals has pushed plasmons down to genuinely atomic dimensions, displaying appealing properties such as a large electrical tunability.
View Article and Find Full Text PDFWe explore the ability of two-dimensional periodic atom arrays to produce light amplification and generate laser emission when gain is introduced through external optical pumping. Specifically, we predict that lasing can take place for arbitrarily weak atomic scatterers assisted by cooperative interaction among atoms in a 2D lattice. We base this conclusion on analytical theory for three-level scatterers, which additionally reveals a rich interplay between lattice and atomic resonances.
View Article and Find Full Text PDFTransparent conductors are essential in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor with optical loss of ∼1.6%, that is, even lower than that of single-layer graphene (2.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2014
Metallic nanowires are among the most promising transparent conductor (TC) alternatives to widely used indium tin oxide (ITO) because of their excellent trade-off between electrical and optical properties, together with their mechanical flexibility. However, they tend to suffer from relatively large surface roughness, instability against oxidation, and poor adhesion to the substrate. Embedding in a suitable material can overcome these shortcomings.
View Article and Find Full Text PDFPolycrystalline graphene and metallic nanowires (NWs) have been proposed to replace indium tin oxide (ITO), the most widely used transparent electrode (TE) film on the market. However, the trade-off between optical transparency (Topt) and electrical sheet resistance (Rs) of these materials taken alone makes them difficult to compete with ITO. In this paper, we show that, by hot-press transfer of graphene monolayer on Ag NWs, the resulting combined structure benefits from the synergy of the two materials, giving a Topt-Rs trade-off better than that expected by simply adding the single material contributions Ag NWs bridge any interruption in transferred graphene, while graphene lowers the contact resistance among neighboring NWs and provides local conductivity in the uncovered regions in-between NWs.
View Article and Find Full Text PDF