In the current study, a combination of precipitation polymerization and modified sol-gel methods were developed to prepare the novel hyaluronic acid-decorated pH and redox dual-stimuli responsive poly(methacrylic acid)/mesoporous organosilica nanoparticles with a core-shell structure for controlled drug release. The nanocarriers have a proper particle size of <200 nm, high negative zeta potential greater than -30 mV, controllable diameter, and tunable shell thickness. The prepared nanoparticles were able to entrap over 70 % of quercetin with a drug loading of >10 %, due to the mesoporous shell.
View Article and Find Full Text PDFStimuli-responsive polymers have been of great interest in the fabrication of advanced drug delivery systems. In this study, a facile approach was developed to synthesize a dually temperature/pH-responsive drug delivery system with a core-shell structure to control the release of doxorubicin (DOX) at the target site. For this purpose, poly(acrylic acid) (PAA) nanospheres were first synthesized using the precipitation polymerization technique and were used as pH-responsive polymeric cores.
View Article and Find Full Text PDFMethylene blue (MB) is the cationic dye that is widely used for coloring cotton, wool, and silk. Since MB is harmful to human beings and toxic to microorganisms, there is the need to find cheap and efficient methods for removal of MB from wastewater prior to disposal into natural waters. In the present study, MB adsorption potential of MgO/AC prepared using a sol-gel-thermal deep-coating method was compared with the activated carbon (AC).
View Article and Find Full Text PDF