For the first time, a study of the influence of the molecular weight of the thermoplastic partially crystalline polyimide R-BAPB on the thermophysical and mechanical properties of carbon plastics was presented. The molecular weight of polyimide was determined using the method of light scattering and the study of the intrinsic viscosity of polyamic acid solutions. To obtain CFRPs, the uniform distribution of polyimide powder on continuous carbon fibers via electrostatic spraying and further hot calendering and pressing were applied.
View Article and Find Full Text PDFThe lack of suitable functional groups for cell adhesion on the surface of Polycaprolactone (PCL) is one of the main limitations in order to use PCL for biomedical applications. The aim of this research is to modify the PCL film surface using arginine, via an aminolysis reaction. In this regard, after PCL films formation by casting method, they were immersed in arginine solutions of various concentration at room temperature or then heated to 40 °C and in the presence of isopropanol or without it.
View Article and Find Full Text PDFA series of multiblock polyurethane-ureas (PUU) based on polycaprolactone diol (PCL) with a molecular mass of 530 or 2000 g/mol, as well as hard segments of different lengths and structures, were synthesized by the step-growth polymerization method. The chemical structure of the synthesized multiblock copolymers was confirmed by IR- and NMR-spectroscopy. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were used to determine the relaxation and phase transition temperatures for the entire series of the obtained PUU.
View Article and Find Full Text PDFPolymeric coatings and membranes with extended stability toward a wide range of organic solvents are practical for application in harsh environments; on the other hand, such stability makes their processing quite difficult. In this work, we propose a novel method for the fabrication of films based on non-soluble polymers. The film is made from the solution of block copolymer containing both soluble and insoluble blocks followed by selective decomposition of soluble blocks.
View Article and Find Full Text PDFSamples of composite materials based on high-performance semicrystalline polyimide R-BAPB (based on the dianhydride R: 1,3-bis-(3',4,-dicarboxyphenoxy)benzene and diamine BAPB: 4,4'-bis-(4″-aminophenoxy)diphenyl)) filled with carbon nanofibers and micron-sized discrete carbon fibers were obtained by FFF printing for the first time. The viscosity of melts of the composites based on R-BAPB, thermal, mechanical characteristics of the obtained composite samples, their internal structure, and biocompatibility were studied. Simultaneously with FFF printing, samples were obtained by injection molding.
View Article and Find Full Text PDFRecently, a strong structural ordering of thermoplastic semi-crystalline polyimides near single-walled carbon nanotubes (SWCNTs) was found that can enhance their mechanical properties. In this study, a comparative analysis of the results of microsecond-scale all-atom computer simulations and experimental measurements of thermoplastic semi-crystalline polyimide R-BAPB synthesized on the basis of dianhydride R (1,3-bis-(3',4-dicarboxyphenoxy) benzene) and diamine BAPB (4,4'-bis-(4″-aminophenoxy) biphenyl) near the SWCNTs on the rheological properties of nanocomposites was performed. We observe the viscosity increase in the SWCNT-filled R-BAPB in the melt state both in computer simulations and experiments.
View Article and Find Full Text PDFHDPE-based composite fibers filled by original and annealed carbon nanodiscs (oND and aND, respectively) were prepared by melt extrusion technology with high-temperature orientational drawing up to draw ratio DR = 8. The thermal properties of the obtained fibers were investigated by DSC and TGA methods. It was shown that the nanofillers can be influenced by high temperatures, at which the molecular mobility in the interlamellar regions became active, while the melting point and the crystallinity degree of the samples were not affected.
View Article and Find Full Text PDFHDPE-based nanocomposite fibers have been extruded from a melt and drawn up to draw ratio DR = 8. Two kinds of carbon nanodiscs (original ones and those exposed to additional annealing) have been used as fillers. Obtained nanocomposite fibers have been investigated with the help of different experimental methods: rheology, SEM and WAXS.
View Article and Find Full Text PDFThe fibers based on thermoplastic partially crystalline polyetherimide R-BAPB modified by vapor grown carbon nanofibers (VGCF) were prepared by melt extrusion, exposed to orientational drawing, and crystallized. All of the samples were examined by scanning electron microscopy, X-ray scattering, and differential scanning calorimetry to study how the carbon nanofiller influences on the internal structure and crystallization behavior of the obtained R-BAPB fibers. The mechanical properties of the composite R-BAPB fibers were also determined.
View Article and Find Full Text PDFThe paper is devoted to the study of influence of chitin nanofibrils on the structure, surface morphology, mechanical properties, and electrical conductivity of chitosan-based composite films intended for use in biomedical technologies. It was demonstrated that the optimal concentration of chitin nanofibrils in the composite film is 5 wt.%.
View Article and Find Full Text PDFIn this work, the precipitation of a thin layer of a polymer solution was proposed to imitate the process of asymmetric membrane formation by a non-solvent induced phase separation (NIPS) technique. The phase inversion within the thin (<500 μm) and bulk (~2 cm) layer of polyamic-acid (PAA) in N-methyl-2-pyrrolidone (NMP) by using water as non-solvent was considered. It was shown that polymer films formed within the "limited" layer of polymer solution showed a good agreement with the morphology of corresponded asymmetric flat-sheet membranes even in the case of three-component casting solution (PAA/NMP/EtOH).
View Article and Find Full Text PDFNanocomposite fibers based on heat-resistant amorphous polyetherimide (PEI) were prepared by twin screw melt micro-extrusion. Vapor-grown carbon nanofibers (VGCFs) and single-wall carbon nanotubes (SWCNTs) were used as fillers which helped to achieve enhanced mechanical properties. The structure and mechanical properties of such nanocomposite fibers were studied.
View Article and Find Full Text PDFThe present work evaluates the transport properties of thermoplastic R-BAPB polyimide based on 1,3-bis(3,3',4,4'-dicarboxyphenoxy)benzene (dianhydride R) and 4,4'-bis(4-aminophenoxy)biphenyl (diamine BAPB). Both experimental studies and molecular dynamics simulations were applied to estimate the diffusion coefficients and solubilities of various gases, such as helium (He), oxygen (O), nitrogen (N), and methane (CH). The validity of the results obtained was confirmed by studying the correlation of the experimental solubilities and diffusion coefficients of He, O, and N in R-BAPB, with their critical temperatures and the effective sizes of the gas molecules, respectively.
View Article and Find Full Text PDF