Here, we propose a low-cost, sustainable, and viable adsorbent (pine tree-derived biochar) to remove acid dyes such as acid violet 17 (AV), which is used in the silk dyeing industry. As a case study, the AV removal process was demonstrated using synthetic effluent and further as a proof of concept using real dye effluent produced from the Sirumugai textile unit in India. The pine tree-derived biochar was selected for removal of aqueous AV dye in batch and fixed-bed column studies.
View Article and Find Full Text PDFA successful attempt to degrade synthetic estrogen 17α-ethynylestradiol (EE2) is demonstrated via combining photocatalysis employing magnesium peroxide (MgO)/low-pressure ultraviolet (LP-UV) treatment followed by biological treatment using small bioreactor platform (SBP) capsules. Reusable MgO was synthesized through wet chemical synthesis and extensively characterized by X-ray diffraction (XRD) for phase confirmation, X-ray photoelectron spectroscopy (XPS) for elemental composition, Brunauer-Emmett-Teller (BET) to explain a specific surface area, scanning electron microscopy (SEM) imaging surface morphology, and UV-visible (Vis) spectrophotometry. The degradation mechanism of EE2 by MgO/LP-UV consisted of LP-UV photolysis of HO in situ (produced by the catalyst under ambient conditions) to generate hydroxyl radicals, and the degradation extent depended on both MgO and UV dose.
View Article and Find Full Text PDFHydrophobic aerogels were used to remove three types of persistent organic pollutants: pharmaceutical drugs (i.e. doxorubicin [DOX], paclitaxel [TAX]), phthalates (diethyl phthalate [DEP]), and hydrophilic rhodamine dye (RhB) from synthetic and real wastewaters, using Lumira granular aerogel from Cabot activated with EtOH (ET-GAG).
View Article and Find Full Text PDFThe intriguing structural properties of coordination polymers (COPs), together with the huge variety of metal ions and organic linkers to choose from, make COPs potential precursors for fabricating carbon-encapsulated metal and metal oxide nanoparticles (NPs). Herein, we have studied the role of the COP structural assembly, prepared through making subtle changes to the ligand structure, on the formation of NPs in a carbon matrix. Cu-COPs (Cu-COP-1-Cu-COP-7), generated using different amino acid-based reduced Schiff base phenolic chelating ligands, exhibited crystalline structures with differing structural organization in the solid state.
View Article and Find Full Text PDFM2 polarization of macrophages is predominant in case of tumors and some other infectious diseases for disease progression. Repolarization of the M2 phenotype to the M1 state may be required to cure diseases. Hence, it is of great interest to find out a material that would repolarize the M2 phenotype to the M1 state.
View Article and Find Full Text PDFCadmium (Cd), classified as human carcinogen, is an extremely toxic heavy metal pollutant, and there is an increasing environmental concern for cadmium exposure through anthropogenic sources including cigarette smoke. Though Cd based nanoparticles such as cadmium oxide (CdO) are being widely used in a variety of clinical and industrial applications, the toxicity of CdO nanoparticles has not been well characterized. Herein we report the toxicity of CdO nanoparticles employing zebrafish as a model.
View Article and Find Full Text PDFIn the present study, cobalt oxide (CoO) magnetic nanoparticles with block and sphere morphologies were synthesized using various surfactants, and the toxicity of the particles was analyzed by monitoring biomarkers of nanoparticle toxicity in zebrafish. The use of tartarate as a surfactant produced highly crystalline blocks of CoO nanoparticles with pores on the sides, whereas citrate lead to the formation of nanoparticles with a spherical morphology. CoO structure, crystallinity, size and morphology were studied using X-ray diffractogram and field emission scanning electron microscopy.
View Article and Find Full Text PDF